transformer-visualizer / model_utils.py
marianvd-01's picture
Update model_utils.py
59d5a80 verified
# model_utils.py -Handles model loading and metadata extraction:
from transformers import (
AutoTokenizer,
AutoModel,
AutoModelForCausalLM,
)
import torch
MODEL_OPTIONS = {
"BERT (bert-base-uncased)": "bert-base-uncased",
"DistilBERT": "distilbert-base-uncased",
"RoBERTa": "roberta-base",
"GPT-2": "gpt2",
"Electra": "google/electra-small-discriminator",
"ALBERT": "albert-base-v2",
"XLNet": "xlnet-base-cased",
}
def load_model(model_name):
if "gpt2" in model_name or "causal" in model_name:
model = AutoModelForCausalLM.from_pretrained(model_name, output_attentions=True)
else:
model = AutoModel.from_pretrained(model_name, output_attentions=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return tokenizer, model
def get_model_info(model):
config = model.config
return {
"Model Type": config.model_type,
"Number of Layers": getattr(config, "num_hidden_layers", "N/A"),
"Number of Attention Heads": getattr(config, "num_attention_heads", "N/A"),
"Total Parameters": sum(p.numel() for p in model.parameters()),
}