|
|
|
|
|
import html |
|
import inspect |
|
from dataclasses import dataclass |
|
|
|
import math |
|
import re |
|
import urllib.parse as ul |
|
import numpy as np |
|
import PIL |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
from contextlib import nullcontext |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.models import AutoencoderKL |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput, BaseOutput |
|
from diffusers.schedulers import DPMSolverMultistepScheduler |
|
from diffusers.utils import ( |
|
BACKENDS_MAPPING, |
|
deprecate, |
|
is_bs4_available, |
|
is_ftfy_available, |
|
logging, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from einops import rearrange |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from ltx_video.models.transformers.transformer3d import Transformer3DModel |
|
from ltx_video.models.transformers.symmetric_patchifier import Patchifier |
|
from ltx_video.models.autoencoders.vae_encode import ( |
|
get_vae_size_scale_factor, |
|
vae_decode, |
|
vae_encode, |
|
) |
|
from ltx_video.models.autoencoders.causal_video_autoencoder import ( |
|
CausalVideoAutoencoder, |
|
) |
|
from ltx_video.schedulers.rf import TimestepShifter |
|
from ltx_video.utils.conditioning_method import ConditioningMethod |
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy |
|
|
|
from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline, retrieve_timesteps |
|
|
|
from ...utils.preprocessor import prepare_source |
|
|
|
|
|
|
|
@dataclass |
|
class ImagePipelineOutput(BaseOutput): |
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
info: Optional[Dict] = None |
|
|
|
|
|
class VaceLTXVideoPipeline(LTXVideoPipeline): |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
src_video: torch.FloatTensor = None, |
|
src_mask: torch.FloatTensor = None, |
|
src_ref_images: List[torch.FloatTensor] = None, |
|
height: int = 512, |
|
width: int = 768, |
|
num_frames: int = 97, |
|
frame_rate: float = 25, |
|
prompt: Union[str, List[str]] = None, |
|
negative_prompt: str = "", |
|
num_inference_steps: int = 20, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 4.5, |
|
context_scale: float = 1.0, |
|
skip_layer_strategy: Optional[SkipLayerStrategy] = None, |
|
skip_block_list: List[int] = None, |
|
stg_scale: float = 1.0, |
|
do_rescaling: bool = True, |
|
rescaling_scale: float = 0.7, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
clean_caption: bool = True, |
|
media_items: Optional[torch.FloatTensor] = None, |
|
decode_timestep: Union[List[float], float] = 0.0, |
|
decode_noise_scale: Optional[List[float]] = None, |
|
mixed_precision: bool = False, |
|
offload_to_cpu: bool = False, |
|
decouple_with_mask: bool = True, |
|
use_mask: bool = True, |
|
decode_all_frames: bool = False, |
|
mask_downsample: [list] = [2, 8, 8], |
|
**kwargs, |
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` |
|
timesteps are used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 4.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The width in pixels of the generated image. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. This negative prompt should be "". If not |
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. |
|
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated attention mask for negative text embeddings. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
clean_caption (`bool`, *optional*, defaults to `True`): |
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to |
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw |
|
prompt. |
|
use_resolution_binning (`bool` defaults to `True`): |
|
If set to `True`, the requested height and width are first mapped to the closest resolutions using |
|
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to |
|
the requested resolution. Useful for generating non-square images. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images |
|
""" |
|
if "mask_feature" in kwargs: |
|
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." |
|
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
is_video = kwargs.get("is_video", False) |
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
do_spatio_temporal_guidance = stg_scale > 0.0 |
|
|
|
num_conds = 1 |
|
if do_classifier_free_guidance: |
|
num_conds += 1 |
|
if do_spatio_temporal_guidance: |
|
num_conds += 1 |
|
|
|
skip_layer_mask = None |
|
if do_spatio_temporal_guidance: |
|
skip_layer_mask = self.transformer.create_skip_layer_mask( |
|
skip_block_list, batch_size, num_conds, 2 |
|
) |
|
|
|
|
|
self.text_encoder = self.text_encoder.to(self._execution_device) |
|
|
|
( |
|
prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_embeds, |
|
negative_prompt_attention_mask, |
|
) = self.encode_prompt( |
|
prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
clean_caption=clean_caption, |
|
) |
|
|
|
if offload_to_cpu: |
|
self.text_encoder = self.text_encoder.cpu() |
|
|
|
self.transformer = self.transformer.to(self._execution_device) |
|
|
|
prompt_embeds_batch = prompt_embeds |
|
prompt_attention_mask_batch = prompt_attention_mask |
|
if do_classifier_free_guidance: |
|
prompt_embeds_batch = torch.cat( |
|
[negative_prompt_embeds, prompt_embeds], dim=0 |
|
) |
|
prompt_attention_mask_batch = torch.cat( |
|
[negative_prompt_attention_mask, prompt_attention_mask], dim=0 |
|
) |
|
if do_spatio_temporal_guidance: |
|
prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0) |
|
prompt_attention_mask_batch = torch.cat( |
|
[ |
|
prompt_attention_mask_batch, |
|
prompt_attention_mask, |
|
], |
|
dim=0, |
|
) |
|
|
|
|
|
self.video_scale_factor = self.video_scale_factor if is_video else 1 |
|
conditioning_method = kwargs.get("conditioning_method", None) |
|
vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False) |
|
image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0) |
|
init_latents, conditioning_mask = self.prepare_conditioning( |
|
media_items, |
|
num_frames, |
|
height, |
|
width, |
|
conditioning_method, |
|
vae_per_channel_normalize, |
|
) |
|
|
|
|
|
|
|
image_size = (height, width) |
|
src_ref_images = [None] * batch_size if src_ref_images is None else src_ref_images |
|
source_ref_len = max([len(ref_imgs) if ref_imgs is not None else 0 for ref_imgs in src_ref_images]) |
|
latent_height = height // self.vae_scale_factor |
|
latent_width = width // self.vae_scale_factor |
|
latent_num_frames = num_frames // self.video_scale_factor |
|
if isinstance(self.vae, CausalVideoAutoencoder) and is_video: |
|
latent_num_frames += 1 |
|
latent_frame_rate = frame_rate / self.video_scale_factor |
|
num_latent_patches = latent_height * latent_width * (latent_num_frames + source_ref_len) |
|
latents = self.prepare_latents( |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_latent_channels=self.transformer.config.in_channels, |
|
num_patches=num_latent_patches, |
|
dtype=prompt_embeds_batch.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=init_latents, |
|
latents_mask=conditioning_mask, |
|
) |
|
src_video, src_mask, src_ref_images = prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, latents.device) |
|
|
|
|
|
if decouple_with_mask: |
|
unchanged = [i * (1 - m) + 0 * m for i, m in zip(src_video, src_mask)] |
|
changed = [i * m + 0 * (1 - m) for i, m in zip(src_video, src_mask)] |
|
unchanged = torch.stack(unchanged, dim=0).to(self.vae.dtype).to(device) if isinstance(unchanged, list) else unchanged.to(self.vae.dtype).to(device) |
|
changed = torch.stack(changed, dim=0).to(self.vae.dtype).to(device) if isinstance(changed, list) else changed.to(self.vae.dtype).to(device) |
|
unchanged_latents = vae_encode(unchanged, vae=self.vae, vae_per_channel_normalize=vae_per_channel_normalize).float() |
|
changed_latents = vae_encode(changed, vae=self.vae, vae_per_channel_normalize=vae_per_channel_normalize).float() |
|
source_latents = torch.stack([torch.cat((u, c), dim=0) for u, c in zip(unchanged_latents, changed_latents)], dim=0) |
|
else: |
|
src_video = torch.stack(src_video, dim=0).to(self.vae.dtype).to(device) if isinstance(src_video, list) else src_video.to(self.vae.dtype).to(device) |
|
source_latents = vae_encode(src_video, vae=self.vae, vae_per_channel_normalize=vae_per_channel_normalize).float() |
|
|
|
|
|
use_ref = all(ref_imgs is not None and len(ref_imgs) > 0 for ref_imgs in src_ref_images) |
|
if use_ref: |
|
source_ref_latents = [] |
|
for i, ref_imgs in enumerate(src_ref_images): |
|
|
|
ref_imgs = torch.stack(ref_imgs, dim=0).to(self.vae.dtype).to(device) if isinstance(ref_imgs, list) else ref_imgs.to(self.vae.dtype).to(device) |
|
ref_latents = vae_encode(ref_imgs, vae=self.vae, vae_per_channel_normalize=vae_per_channel_normalize).float() |
|
|
|
ref_latents = ref_latents.permute(2, 1, 0, 3, 4) |
|
if decouple_with_mask: |
|
ref_latents = torch.cat([ref_latents, torch.zeros_like(ref_latents)], dim=1) |
|
source_ref_latents.append(ref_latents) |
|
|
|
source_ref_latents = torch.cat(source_ref_latents, dim=0) |
|
else: |
|
source_ref_latents = None |
|
|
|
|
|
if source_ref_latents is not None: |
|
source_latents = torch.cat([source_ref_latents, source_latents], dim=2) |
|
source_latents = self.patchifier.patchify(latents=source_latents).to(self.transformer.dtype).to(device) |
|
|
|
|
|
if use_mask and src_mask is not None: |
|
source_mask_latents = [] |
|
for submask in src_mask: |
|
submask = F.interpolate(submask.unsqueeze(0), |
|
size=(latent_num_frames * mask_downsample[0], |
|
latent_height * mask_downsample[1], |
|
latent_width * mask_downsample[2]), |
|
mode='trilinear', align_corners=True) |
|
submask = rearrange(submask, "b c (f p1) (h p2) (w p3) -> b (c p1 p2 p3) f h w", p1=mask_downsample[0], p2=mask_downsample[1], p3=mask_downsample[2]).to(device) |
|
if source_ref_latents is not None: |
|
if decouple_with_mask: |
|
submask = torch.cat([torch.zeros_like(source_ref_latents[:, :latents.shape[-1], :]), submask], dim=2) |
|
else: |
|
submask = torch.cat([torch.zeros_like(source_ref_latents), submask], dim=2) |
|
submask = self.patchifier.patchify(submask) |
|
source_mask_latents.append(submask) |
|
source_mask_latents = torch.cat(source_mask_latents, dim=0).to(self.transformer.dtype).to(device) |
|
else: |
|
source_mask_latents = None |
|
|
|
|
|
orig_conditiong_mask = conditioning_mask |
|
if conditioning_mask is not None and is_video: |
|
assert num_images_per_prompt == 1 |
|
conditioning_mask = ( |
|
torch.cat([conditioning_mask] * num_conds) |
|
if num_conds > 1 |
|
else conditioning_mask |
|
) |
|
|
|
|
|
retrieve_timesteps_kwargs = {} |
|
if isinstance(self.scheduler, TimestepShifter): |
|
retrieve_timesteps_kwargs["samples"] = latents |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
**retrieve_timesteps_kwargs, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = max( |
|
len(timesteps) - num_inference_steps * self.scheduler.order, 0 |
|
) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if conditioning_method == ConditioningMethod.FIRST_FRAME: |
|
latents = self.image_cond_noise_update( |
|
t, |
|
init_latents, |
|
latents, |
|
image_cond_noise_scale, |
|
orig_conditiong_mask, |
|
generator, |
|
) |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * num_conds) if num_conds > 1 else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
latent_frame_rates = ( |
|
torch.ones( |
|
latent_model_input.shape[0], 1, device=latent_model_input.device |
|
) |
|
* latent_frame_rate |
|
) |
|
|
|
current_timestep = t |
|
if not torch.is_tensor(current_timestep): |
|
|
|
|
|
is_mps = latent_model_input.device.type == "mps" |
|
if isinstance(current_timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
current_timestep = torch.tensor( |
|
[current_timestep], |
|
dtype=dtype, |
|
device=latent_model_input.device, |
|
) |
|
elif len(current_timestep.shape) == 0: |
|
current_timestep = current_timestep[None].to( |
|
latent_model_input.device |
|
) |
|
|
|
current_timestep = current_timestep.expand( |
|
latent_model_input.shape[0] |
|
).unsqueeze(-1) |
|
scale_grid = ( |
|
( |
|
1 / latent_frame_rates, |
|
self.vae_scale_factor, |
|
self.vae_scale_factor, |
|
) |
|
if self.transformer.use_rope |
|
else None |
|
) |
|
indices_grid = self.patchifier.get_grid( |
|
orig_num_frames=latent_num_frames + source_ref_len, |
|
orig_height=latent_height, |
|
orig_width=latent_width, |
|
batch_size=latent_model_input.shape[0], |
|
scale_grid=scale_grid, |
|
device=latents.device, |
|
) |
|
|
|
if conditioning_mask is not None: |
|
current_timestep = current_timestep * (1 - conditioning_mask) |
|
|
|
if mixed_precision: |
|
if "xla" in device.type: |
|
raise NotImplementedError( |
|
"Mixed precision is not supported yet on XLA devices." |
|
) |
|
|
|
context_manager = torch.autocast(device.type, dtype=torch.bfloat16) |
|
else: |
|
context_manager = nullcontext() |
|
|
|
|
|
with context_manager: |
|
noise_pred = self.transformer( |
|
latent_model_input.to(self.transformer.dtype), |
|
indices_grid, |
|
source_latents=source_latents, |
|
source_mask_latents=source_mask_latents if use_mask else None, |
|
context_scale=context_scale, |
|
encoder_hidden_states=prompt_embeds_batch.to( |
|
self.transformer.dtype |
|
), |
|
encoder_attention_mask=prompt_attention_mask_batch, |
|
timestep=current_timestep, |
|
skip_layer_mask=skip_layer_mask, |
|
skip_layer_strategy=skip_layer_strategy, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_spatio_temporal_guidance: |
|
noise_pred_text_perturb = noise_pred[-1:] |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[:2].chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
if do_spatio_temporal_guidance: |
|
noise_pred = noise_pred + stg_scale * ( |
|
noise_pred_text - noise_pred_text_perturb |
|
) |
|
if do_rescaling: |
|
factor = noise_pred_text.std() / noise_pred.std() |
|
factor = rescaling_scale * factor + (1 - rescaling_scale) |
|
noise_pred = noise_pred * factor |
|
|
|
current_timestep = current_timestep[:1] |
|
|
|
if ( |
|
self.transformer.config.out_channels // 2 |
|
== self.transformer.config.in_channels |
|
): |
|
noise_pred = noise_pred.chunk(2, dim=1)[0] |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t if current_timestep is None else current_timestep, |
|
latents, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
|
|
if callback_on_step_end is not None: |
|
callback_on_step_end(self, i, t, {}) |
|
|
|
if offload_to_cpu: |
|
self.transformer = self.transformer.cpu() |
|
if self._execution_device == "cuda": |
|
torch.cuda.empty_cache() |
|
|
|
latents = self.patchifier.unpatchify( |
|
latents=latents, |
|
output_height=latent_height, |
|
output_width=latent_width, |
|
output_num_frames=latent_num_frames + source_ref_len, |
|
out_channels=self.transformer.config.in_channels |
|
// math.prod(self.patchifier.patch_size), |
|
) |
|
|
|
if not decode_all_frames: |
|
latents = latents[:, :, source_ref_len:] |
|
|
|
if output_type != "latent": |
|
if self.vae.decoder.timestep_conditioning: |
|
noise = torch.randn_like(latents) |
|
if not isinstance(decode_timestep, list): |
|
decode_timestep = [decode_timestep] * latents.shape[0] |
|
if decode_noise_scale is None: |
|
decode_noise_scale = decode_timestep |
|
elif not isinstance(decode_noise_scale, list): |
|
decode_noise_scale = [decode_noise_scale] * latents.shape[0] |
|
|
|
decode_timestep = torch.tensor(decode_timestep).to(latents.device) |
|
decode_noise_scale = torch.tensor(decode_noise_scale).to( |
|
latents.device |
|
)[:, None, None, None, None] |
|
latents = ( |
|
latents * (1 - decode_noise_scale) + noise * decode_noise_scale |
|
) |
|
else: |
|
decode_timestep = None |
|
image = vae_decode( |
|
latents, |
|
self.vae, |
|
is_video, |
|
vae_per_channel_normalize=kwargs["vae_per_channel_normalize"], |
|
timestep=decode_timestep, |
|
) |
|
|
|
|
|
else: |
|
image = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
info = { |
|
"height": height, |
|
"width": width, |
|
"num_frames": num_frames, |
|
"frame_rate": frame_rate |
|
} |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image, info=info) |
|
|
|
|