maffia's picture
Upload 94 files
690f890 verified
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import io
import os
import torch
import numpy as np
import cv2
import imageio
from PIL import Image
import pycocotools.mask as mask_utils
def single_mask_to_rle(mask):
rle = mask_utils.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
return rle
def single_rle_to_mask(rle):
mask = np.array(mask_utils.decode(rle)).astype(np.uint8)
return mask
def single_mask_to_xyxy(mask):
bbox = np.zeros((4), dtype=int)
rows, cols = np.where(np.array(mask))
if len(rows) > 0 and len(cols) > 0:
x_min, x_max = np.min(cols), np.max(cols)
y_min, y_max = np.min(rows), np.max(rows)
bbox[:] = [x_min, y_min, x_max, y_max]
return bbox.tolist()
def get_mask_box(mask, threshold=255):
locs = np.where(mask >= threshold)
if len(locs) < 1 or locs[0].shape[0] < 1 or locs[1].shape[0] < 1:
return None
left, right = np.min(locs[1]), np.max(locs[1])
top, bottom = np.min(locs[0]), np.max(locs[0])
return [left, top, right, bottom]
def convert_to_numpy(image):
if isinstance(image, Image.Image):
image = np.array(image)
elif isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
elif isinstance(image, np.ndarray):
image = image.copy()
else:
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
return image
def convert_to_pil(image):
if isinstance(image, Image.Image):
image = image.copy()
elif isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
image = Image.fromarray(image.astype('uint8'))
elif isinstance(image, np.ndarray):
image = Image.fromarray(image.astype('uint8'))
else:
raise TypeError(f'Unsupported data type {type(image)}, only supports np.ndarray, torch.Tensor, Pillow Image.')
return image
def convert_to_torch(image):
if isinstance(image, Image.Image):
image = torch.from_numpy(np.array(image)).float()
elif isinstance(image, torch.Tensor):
image = image.clone()
elif isinstance(image, np.ndarray):
image = torch.from_numpy(image.copy()).float()
else:
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
return image
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(
input_image, (W, H),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img, k
def resize_image_ori(h, w, image, k):
img = cv2.resize(
image, (w, h),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def save_one_video(file_path, videos, fps=8, quality=8, macro_block_size=None):
try:
video_writer = imageio.get_writer(file_path, fps=fps, codec='libx264', quality=quality, macro_block_size=macro_block_size)
for frame in videos:
video_writer.append_data(frame)
video_writer.close()
return True
except Exception as e:
print(f"Video save error: {e}")
return False
def save_one_image(file_path, image, use_type='cv2'):
try:
if use_type == 'cv2':
cv2.imwrite(file_path, image)
elif use_type == 'pil':
image = Image.fromarray(image)
image.save(file_path)
else:
raise ValueError(f"Unknown image write type '{use_type}'")
return True
except Exception as e:
print(f"Image save error: {e}")
return False
def read_image(image_path, use_type='cv2', is_rgb=True, info=False):
image = None
width, height = None, None
if use_type == 'cv2':
try:
image = cv2.imread(image_path)
if image is None:
raise Exception("Image not found or path is incorrect.")
if is_rgb:
image = image[..., ::-1]
height, width = image.shape[:2]
except Exception as e:
print(f"OpenCV read error: {e}")
return None
elif use_type == 'pil':
try:
image = Image.open(image_path)
if is_rgb:
image = image.convert('RGB')
width, height = image.size
image = np.array(image)
except Exception as e:
print(f"PIL read error: {e}")
return None
else:
raise ValueError(f"Unknown image read type '{use_type}'")
if info:
return image, width, height
else:
return image
def read_mask(mask_path, use_type='cv2', info=False):
mask = None
width, height = None, None
if use_type == 'cv2':
try:
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if mask is None:
raise Exception("Mask not found or path is incorrect.")
height, width = mask.shape
except Exception as e:
print(f"OpenCV read error: {e}")
return None
elif use_type == 'pil':
try:
mask = Image.open(mask_path).convert('L')
width, height = mask.size
mask = np.array(mask)
except Exception as e:
print(f"PIL read error: {e}")
return None
else:
raise ValueError(f"Unknown mask read type '{use_type}'")
if info:
return mask, width, height
else:
return mask
def read_video_frames(video_path, use_type='cv2', is_rgb=True, info=False):
frames = []
if use_type == "decord":
import decord
decord.bridge.set_bridge("native")
try:
cap = decord.VideoReader(video_path)
total_frames = len(cap)
fps = cap.get_avg_fps()
height, width, _ = cap[0].shape
frames = [cap[i].asnumpy() for i in range(len(cap))]
except Exception as e:
print(f"Decord read error: {e}")
return None
elif use_type == "cv2":
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if is_rgb:
frames.append(frame[..., ::-1])
else:
frames.append(frame)
cap.release()
total_frames = len(frames)
except Exception as e:
print(f"OpenCV read error: {e}")
return None
else:
raise ValueError(f"Unknown video type {use_type}")
if info:
return frames, fps, width, height, total_frames
else:
return frames
def read_video_one_frame(video_path, use_type='cv2', is_rgb=True):
image_first = None
if use_type == "decord":
import decord
decord.bridge.set_bridge("native")
try:
cap = decord.VideoReader(video_path)
image_first = cap[0].asnumpy()
except Exception as e:
print(f"Decord read error: {e}")
return None
elif use_type == "cv2":
try:
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
if is_rgb:
image_first = frame[..., ::-1]
else:
image_first = frame
cap.release()
except Exception as e:
print(f"OpenCV read error: {e}")
return None
else:
raise ValueError(f"Unknown video type {use_type}")
return image_first
def align_frames(first_frame, last_frame):
h1, w1 = first_frame.shape[:2]
h2, w2 = last_frame.shape[:2]
if (h1, w1) == (h2, w2):
return last_frame
ratio = min(w1 / w2, h1 / h2)
new_w = int(w2 * ratio)
new_h = int(h2 * ratio)
resized = cv2.resize(last_frame, (new_w, new_h), interpolation=cv2.INTER_AREA)
aligned = np.ones((h1, w1, 3), dtype=np.uint8) * 255
x_offset = (w1 - new_w) // 2
y_offset = (h1 - new_h) // 2
aligned[y_offset:y_offset + new_h, x_offset:x_offset + new_w] = resized
return aligned
def save_sam2_video(video_path, video_segments, output_video_path):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
obj_mask_map = {}
for frame_idx, segments in video_segments.items():
for obj_id, info in segments.items():
seg = single_rle_to_mask(info['mask'])[None, ...].squeeze(0).astype(bool)
if obj_id not in obj_mask_map:
obj_mask_map[obj_id] = [seg]
else:
obj_mask_map[obj_id].append(seg)
for obj_id, segs in obj_mask_map.items():
output_obj_video_path = os.path.join(output_video_path, f"{obj_id}.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # codec for saving the video
video_writer = cv2.VideoWriter(output_obj_video_path, fourcc, fps, (width * 2, height))
for i, (frame, seg) in enumerate(zip(frames, segs)):
print(obj_id, i, np.sum(seg), seg.shape)
left_frame = frame.copy()
left_frame[seg] = 0
right_frame = frame.copy()
right_frame[~seg] = 255
frame_new = np.concatenate([left_frame, right_frame], axis=1)
video_writer.write(frame_new)
video_writer.release()
def get_annotator_instance(anno_cfg):
import vace.annotators as annotators
anno_cfg = copy.deepcopy(anno_cfg)
class_name = anno_cfg.pop("NAME")
input_params = anno_cfg.pop("INPUTS")
output_params = anno_cfg.pop("OUTPUTS")
anno_ins = getattr(annotators, class_name)(cfg=anno_cfg)
return {"inputs": input_params, "outputs": output_params, "anno_ins": anno_ins}
def get_annotator(config_type='', config_task='', return_dict=True):
anno_dict = None
from vace.configs import VACE_CONFIGS
if config_type in VACE_CONFIGS:
task_configs = VACE_CONFIGS[config_type]
if config_task in task_configs:
anno_dict = get_annotator_instance(task_configs[config_task])
else:
raise ValueError(f"Unknown config task {config_task}")
else:
for cfg_type, cfg_dict in VACE_CONFIGS.items():
if config_task in cfg_dict:
for task_name, task_cfg in cfg_dict[config_task].items():
anno_dict = get_annotator_instance(task_cfg)
else:
raise ValueError(f"Unknown config type {config_type}")
if return_dict:
return anno_dict
else:
return anno_dict['anno_ins']