File size: 6,724 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.cuda.amp as amp
from xfuser.core.distributed import (get_sequence_parallel_rank,
                                     get_sequence_parallel_world_size,
                                     get_sp_group)
from xfuser.core.long_ctx_attention import xFuserLongContextAttention

from ..modules.model import sinusoidal_embedding_1d


def pad_freqs(original_tensor, target_len):
    seq_len, s1, s2 = original_tensor.shape
    pad_size = target_len - seq_len
    padding_tensor = torch.ones(
        pad_size,
        s1,
        s2,
        dtype=original_tensor.dtype,
        device=original_tensor.device)
    padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
    return padded_tensor


@amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
    """
    x:          [B, L, N, C].
    grid_sizes: [B, 3].
    freqs:      [M, C // 2].
    """
    s, n, c = x.size(1), x.size(2), x.size(3) // 2
    # split freqs
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)

    # loop over samples
    output = []
    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
        seq_len = f * h * w

        # precompute multipliers
        x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
            s, n, -1, 2))
        freqs_i = torch.cat([
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
        ],
                            dim=-1).reshape(seq_len, 1, -1)

        # apply rotary embedding
        sp_size = get_sequence_parallel_world_size()
        sp_rank = get_sequence_parallel_rank()
        freqs_i = pad_freqs(freqs_i, s * sp_size)
        s_per_rank = s
        freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
                                                       s_per_rank), :, :]
        x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
        x_i = torch.cat([x_i, x[i, s:]])

        # append to collection
        output.append(x_i)
    return torch.stack(output).float()


def usp_dit_forward_vace(
    self,
    x,
    vace_context,
    seq_len,
    kwargs
):
    # embeddings
    c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
    c = [u.flatten(2).transpose(1, 2) for u in c]
    c = torch.cat([
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                  dim=1) for u in c
    ])

    # arguments
    new_kwargs = dict(x=x)
    new_kwargs.update(kwargs)

    # Context Parallel
    c = torch.chunk(
        c, get_sequence_parallel_world_size(),
        dim=1)[get_sequence_parallel_rank()]

    for block in self.vace_blocks:
        c = block(c, **new_kwargs)
    hints = torch.unbind(c)[:-1]
    return hints


def usp_dit_forward(
    self,
    x,
    t,
    vace_context,
    context,
    seq_len,
    vace_context_scale=1.0,
    clip_fea=None,
    y=None,
):
    """
    x:              A list of videos each with shape [C, T, H, W].
    t:              [B].
    context:        A list of text embeddings each with shape [L, C].
    """
    # params
    device = self.patch_embedding.weight.device
    if self.freqs.device != device:
        self.freqs = self.freqs.to(device)

    # if y is not None:
    #     x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

    # embeddings
    x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
    grid_sizes = torch.stack(
        [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
    x = [u.flatten(2).transpose(1, 2) for u in x]
    seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
    assert seq_lens.max() <= seq_len
    x = torch.cat([
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
        for u in x
    ])

    # time embeddings
    with amp.autocast(dtype=torch.float32):
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, t).float())
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
        assert e.dtype == torch.float32 and e0.dtype == torch.float32

    # context
    context_lens = None
    context = self.text_embedding(
        torch.stack([
            torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
            for u in context
        ]))

    # if clip_fea is not None:
    #     context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
    #     context = torch.concat([context_clip, context], dim=1)

    # arguments
    kwargs = dict(
        e=e0,
        seq_lens=seq_lens,
        grid_sizes=grid_sizes,
        freqs=self.freqs,
        context=context,
        context_lens=context_lens)

    # Context Parallel
    x = torch.chunk(
        x, get_sequence_parallel_world_size(),
        dim=1)[get_sequence_parallel_rank()]

    hints = self.forward_vace(x, vace_context, seq_len, kwargs)
    kwargs['hints'] = hints
    kwargs['context_scale'] = vace_context_scale

    for block in self.blocks:
        x = block(x, **kwargs)

    # head
    x = self.head(x, e)

    # Context Parallel
    x = get_sp_group().all_gather(x, dim=1)

    # unpatchify
    x = self.unpatchify(x, grid_sizes)
    return [u.float() for u in x]


def usp_attn_forward(self,
                     x,
                     seq_lens,
                     grid_sizes,
                     freqs,
                     dtype=torch.bfloat16):
    b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
    half_dtypes = (torch.float16, torch.bfloat16)

    def half(x):
        return x if x.dtype in half_dtypes else x.to(dtype)

    # query, key, value function
    def qkv_fn(x):
        q = self.norm_q(self.q(x)).view(b, s, n, d)
        k = self.norm_k(self.k(x)).view(b, s, n, d)
        v = self.v(x).view(b, s, n, d)
        return q, k, v

    q, k, v = qkv_fn(x)
    q = rope_apply(q, grid_sizes, freqs)
    k = rope_apply(k, grid_sizes, freqs)

    # TODO: We should use unpaded q,k,v for attention.
    # k_lens = seq_lens // get_sequence_parallel_world_size()
    # if k_lens is not None:
    #     q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
    #     k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
    #     v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)

    x = xFuserLongContextAttention()(
        None,
        query=half(q),
        key=half(k),
        value=half(v),
        window_size=self.window_size)

    # TODO: padding after attention.
    # x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)

    # output
    x = x.flatten(2)
    x = self.o(x)
    return x