File size: 6,724 Bytes
690f890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.cuda.amp as amp
from xfuser.core.distributed import (get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_sp_group)
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
from ..modules.model import sinusoidal_embedding_1d
def pad_freqs(original_tensor, target_len):
seq_len, s1, s2 = original_tensor.shape
pad_size = target_len - seq_len
padding_tensor = torch.ones(
pad_size,
s1,
s2,
dtype=original_tensor.dtype,
device=original_tensor.device)
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
return padded_tensor
@amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
"""
x: [B, L, N, C].
grid_sizes: [B, 3].
freqs: [M, C // 2].
"""
s, n, c = x.size(1), x.size(2), x.size(3) // 2
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
s, n, -1, 2))
freqs_i = torch.cat([
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
],
dim=-1).reshape(seq_len, 1, -1)
# apply rotary embedding
sp_size = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
freqs_i = pad_freqs(freqs_i, s * sp_size)
s_per_rank = s
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
s_per_rank), :, :]
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
x_i = torch.cat([x_i, x[i, s:]])
# append to collection
output.append(x_i)
return torch.stack(output).float()
def usp_dit_forward_vace(
self,
x,
vace_context,
seq_len,
kwargs
):
# embeddings
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
c = [u.flatten(2).transpose(1, 2) for u in c]
c = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
dim=1) for u in c
])
# arguments
new_kwargs = dict(x=x)
new_kwargs.update(kwargs)
# Context Parallel
c = torch.chunk(
c, get_sequence_parallel_world_size(),
dim=1)[get_sequence_parallel_rank()]
for block in self.vace_blocks:
c = block(c, **new_kwargs)
hints = torch.unbind(c)[:-1]
return hints
def usp_dit_forward(
self,
x,
t,
vace_context,
context,
seq_len,
vace_context_scale=1.0,
clip_fea=None,
y=None,
):
"""
x: A list of videos each with shape [C, T, H, W].
t: [B].
context: A list of text embeddings each with shape [L, C].
"""
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
# if y is not None:
# x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
# embeddings
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
grid_sizes = torch.stack(
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
x = [u.flatten(2).transpose(1, 2) for u in x]
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
assert seq_lens.max() <= seq_len
x = torch.cat([
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
for u in x
])
# time embeddings
with amp.autocast(dtype=torch.float32):
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).float())
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context_lens = None
context = self.text_embedding(
torch.stack([
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
for u in context
]))
# if clip_fea is not None:
# context_clip = self.img_emb(clip_fea) # bs x 257 x dim
# context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(
e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=self.freqs,
context=context,
context_lens=context_lens)
# Context Parallel
x = torch.chunk(
x, get_sequence_parallel_world_size(),
dim=1)[get_sequence_parallel_rank()]
hints = self.forward_vace(x, vace_context, seq_len, kwargs)
kwargs['hints'] = hints
kwargs['context_scale'] = vace_context_scale
for block in self.blocks:
x = block(x, **kwargs)
# head
x = self.head(x, e)
# Context Parallel
x = get_sp_group().all_gather(x, dim=1)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return [u.float() for u in x]
def usp_attn_forward(self,
x,
seq_lens,
grid_sizes,
freqs,
dtype=torch.bfloat16):
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
half_dtypes = (torch.float16, torch.bfloat16)
def half(x):
return x if x.dtype in half_dtypes else x.to(dtype)
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
q, k, v = qkv_fn(x)
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
# TODO: We should use unpaded q,k,v for attention.
# k_lens = seq_lens // get_sequence_parallel_world_size()
# if k_lens is not None:
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
x = xFuserLongContextAttention()(
None,
query=half(q),
key=half(k),
value=half(v),
window_size=self.window_size)
# TODO: padding after attention.
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
# output
x = x.flatten(2)
x = self.o(x)
return x
|