import gradio as gr from llama_cpp import Llama from qdrant_client import QdrantClient from datasets import load_dataset from sentence_transformers import SentenceTransformer import cv2 import os import tempfile import uuid import re import subprocess import time # Configuration QDRANT_COLLECTION_NAME = "video_frames" VIDEO_SEGMENT_DURATION = 60 # Load Qdrant key QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") if not QDRANT_API_KEY: print("Error: QDRANT_API_KEY environment variable not found.") print("Please add your Qdrant API key as a secret named 'QDRANT_API_KEY' in your Hugging Face Space settings.") raise ValueError("QDRANT_API_KEY environment variable not set.") print("Initializing LLM...") try: llm = Llama.from_pretrained( repo_id="m1tch/gemma-finetune-ai_class_gguf", filename="gemma-3_ai_class.Q8_0.gguf", n_gpu_layers=-1, n_ctx=2048, verbose=False ) print("LLM initialized successfully.") except Exception as e: print(f"Error initializing LLM: {e}") raise print("Connecting to Qdrant...") try: qdrant_client = QdrantClient( url="https://2c18d413-cbb5-441c-b060-4c8c2302dcde.us-east4-0.gcp.cloud.qdrant.io:6333/", api_key=QDRANT_API_KEY, timeout=60 ) qdrant_client.get_collections() print("Qdrant connection successful.") except Exception as e: print(f"Error connecting to Qdrant: {e}") raise print("Loading dataset stream...") try: # Load video dataset dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True) print(f"Dataset loaded. First item example: {next(iter(dataset))['__key__']}") except Exception as e: print(f"Error loading dataset: {e}") raise try: embedding_model = SentenceTransformer('all-MiniLM-L6-v2') print("Sentence Transformer model loaded.") except Exception as e: print(f"Error loading Sentence Transformer model: {e}") raise def rag_query(client, collection_name, query_text, top_k=5, filter_condition=None): """ Test RAG by querying the vector database with text. Returns a dictionary with search results and metadata. Uses the pre-loaded embedding_model. """ try: query_vector = embedding_model.encode(query_text).tolist() search_params = { "collection_name": collection_name, "query_vector": query_vector, "limit": top_k, "with_payload": True, "with_vectors": False } if filter_condition: search_params["filter"] = filter_condition search_results = client.search(**search_params) formatted_results = [] for idx, result in enumerate(search_results): formatted_results.append({ "rank": idx + 1, "score": result.score, "video_id": result.payload.get("video_id"), "timestamp": result.payload.get("timestamp"), "subtitle": result.payload.get("subtitle"), "frame_number": result.payload.get("frame_number") }) return { "query": query_text, "results": formatted_results, "avg_score": sum(r.score for r in search_results) / len(search_results) if search_results else 0 } except Exception as e: print(f"Error during RAG query: {e}") return {"error": str(e), "query": query_text, "results": []} def extract_video_segment(video_id, start_time, duration, dataset): """ Generator function that extracts and yields a single video segment file path. Modified to return a single path suitable for Gradio. """ target_id = str(video_id) target_key = f"videos/{target_id}/{target_id}" start_time = float(start_time) duration = float(duration) unique_id = str(uuid.uuid4()) temp_dir = os.path.join(tempfile.gettempdir(), f"gradio_video_{unique_id}") os.makedirs(temp_dir, exist_ok=True) temp_video_path = os.path.join(temp_dir, f"{target_id}_full_{unique_id}.mp4") output_path_opencv = os.path.join(temp_dir, f"output_opencv_{unique_id}.mp4") output_path_ffmpeg = os.path.join(temp_dir, f"output_ffmpeg_{unique_id}.mp4") print(f"Attempting to extract segment for video_id={target_id}, start={start_time}, duration={duration}") print(f"Looking for dataset key: {target_key}") print(f"Temporary directory: {temp_dir}") try: found = False retries = 3 dataset_iterator = iter(dataset) for _ in range(retries * 100): try: sample = next(dataset_iterator) if '__key__' in sample and sample['__key__'] == target_key: found = True print(f"Found video key {target_key}. Saving to {temp_video_path}...") with open(temp_video_path, 'wb') as f: f.write(sample['mp4']) print(f"Video saved successfully ({os.path.getsize(temp_video_path)} bytes).") break except StopIteration: print("Reached end of dataset stream without finding the video.") break except Exception as e: print(f"Error iterating dataset: {e}") time.sleep(1) if not found: print(f"Could not find video with ID {target_id} (key: {target_key}) in the dataset stream after {_ + 1} attempts.") return None # Process the saved video if not os.path.exists(temp_video_path) or os.path.getsize(temp_video_path) == 0: print(f"Temporary video file {temp_video_path} is missing or empty.") return None cap = cv2.VideoCapture(temp_video_path) if not cap.isOpened(): print(f"Error opening video file with OpenCV: {temp_video_path}") return None fps = cap.get(cv2.CAP_PROP_FPS) if fps <= 0: print(f"Warning: Invalid FPS ({fps}) detected for {temp_video_path}. Assuming 30 FPS.") fps = 30 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_vid_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) vid_duration = total_vid_frames / fps if fps > 0 else 0 print(f"Video properties: {width}x{height} @ {fps:.2f}fps, Total Duration: {vid_duration:.2f}s") start_frame = int(start_time * fps) end_frame = int((start_time + duration) * fps) # Clamp frame numbers to valid range start_frame = max(0, start_frame) end_frame = min(total_vid_frames, end_frame) if start_frame >= total_vid_frames or start_frame >= end_frame: print(f"Calculated start frame ({start_frame}) is beyond video length ({total_vid_frames}) or segment is invalid.") cap.release() return None cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame) frames_to_write = end_frame - start_frame print(f"Extracting frames from {start_frame} to {end_frame} ({frames_to_write} frames)") # Try OpenCV first fourcc_opencv = cv2.VideoWriter_fourcc(*'mp4v') # mp4v is often more compatible than avc1 with base OpenCV out_opencv = cv2.VideoWriter(output_path_opencv, fourcc_opencv, fps, (width, height)) if not out_opencv.isOpened(): print("Error opening OpenCV VideoWriter with mp4v.") cap.release() return None frames_written_opencv = 0 while frames_written_opencv < frames_to_write: ret, frame = cap.read() if not ret: print("Warning: Ran out of frames before reaching target end frame.") break out_opencv.write(frame) frames_written_opencv += 1 out_opencv.release() print(f"OpenCV finished writing {frames_written_opencv} frames to {output_path_opencv}") cap.release() # FFmpeg final_output_path = None try: cmd = [ 'ffmpeg', '-ss', str(start_time), # Start time '-i', temp_video_path, # Input file (original downloaded) '-t', str(duration), # Duration of the segment '-c:v', 'libx264', '-profile:v', 'baseline', '-level', '3.0', '-preset', 'fast', '-pix_fmt', 'yuv420p', '-movflags', '+faststart', '-c:a', 'aac', '-b:a', '128k', '-y', output_path_ffmpeg ] print(f"Running FFmpeg command: {' '.join(cmd)}") result = subprocess.run(cmd, capture_output=True, text=True, timeout=120) # Add timeout if result.returncode == 0 and os.path.exists(output_path_ffmpeg) and os.path.getsize(output_path_ffmpeg) > 0: print(f"FFmpeg processing successful. Output: {output_path_ffmpeg}") final_output_path = output_path_ffmpeg else: print(f"FFmpeg error (Return Code: {result.returncode}):") print(f"FFmpeg stdout:\n{result.stdout}") print(f"FFmpeg stderr:\n{result.stderr}") print("Falling back to OpenCV output.") if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0: final_output_path = output_path_opencv else: print("OpenCV output is also invalid or empty.") final_output_path = None except subprocess.TimeoutExpired: print("FFmpeg command timed out.") print("Falling back to OpenCV output.") if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0: final_output_path = output_path_opencv else: print("OpenCV output is also invalid or empty.") final_output_path = None except FileNotFoundError: print("Error: ffmpeg command not found. Make sure FFmpeg is installed and in your system's PATH.") print("Falling back to OpenCV output.") if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0: final_output_path = output_path_opencv else: print("OpenCV output is also invalid or empty.") final_output_path = None except Exception as e: print(f"An unexpected error occurred during FFmpeg processing: {e}") print("Falling back to OpenCV output.") if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0: final_output_path = output_path_opencv else: print("OpenCV output is also invalid or empty.") final_output_path = None if os.path.exists(temp_video_path): try: os.remove(temp_video_path) print(f"Cleaned up temporary full video: {temp_video_path}") except Exception as e: print(f"Warning: Could not remove temporary file {temp_video_path}: {e}") # If FFmpeg failed if final_output_path != output_path_ffmpeg and os.path.exists(output_path_ffmpeg): try: os.remove(output_path_ffmpeg) except Exception as e: print(f"Warning: Could not remove failed ffmpeg output {output_path_ffmpeg}: {e}") print(f"Returning video segment path: {final_output_path}") return final_output_path except Exception as e: print(f"Error processing video segment for {video_id}: {e}") import traceback traceback.print_exc() if 'cap' in locals() and cap.isOpened(): cap.release() if 'out_opencv' in locals() and out_opencv.isOpened(): out_opencv.release() if os.path.exists(temp_video_path): os.remove(temp_video_path) if os.path.exists(output_path_opencv): os.remove(output_path_opencv) if os.path.exists(output_path_ffmpeg): os.remove(output_path_ffmpeg) return None QDRANT_COLLECTION_NAME = "video_frames" VIDEO_SEGMENT_DURATION = 40 # Extract 40 seconds around the timestamp def parse_llm_output(text): """ Parses the LLM's structured output using a mix of regex for simple fields (video_id, timestamp) and string manipulation for reasoning as a workaround for regex matching issues. """ data = {} # Parse video_id and timestamp with regex simple_patterns = { 'video_id': r"\{Best Result:\s*\[?([^\]\}]+)\]?\s*\}", 'timestamp': r"\{Timestamp:\s*\[?([^\]\}]+)\]?\s*\}", } for key, pattern in simple_patterns.items(): match = re.search(pattern, text, re.IGNORECASE) if match: value = match.group(1).strip() value = value.strip('\'"“”') data[key] = value else: print(f"Warning: Could not parse '{key}' using regex pattern: {pattern}") data[key] = None # Parse reasoning reasoning_value = None try: key_marker_lower = "{reasoning:" start_index = text.lower().find(key_marker_lower) if start_index != -1: search_start_for_brace = start_index + len(key_marker_lower) end_index = text.find('}', search_start_for_brace) if end_index != -1: actual_marker_end = start_index + len(key_marker_lower) value = text[actual_marker_end : end_index] value = value.strip() if value.startswith('[') and value.endswith(']'): value = value[1:-1] value = value.strip('\'"“”') value = value.strip() reasoning_value = value else: print("Warning: Found '{reasoning:' marker but no closing '}' found afterwards.") else: print("Warning: Marker '{reasoning:' not found in text.") except Exception as e: print(f"Error during string manipulation parsing for reasoning: {e}") data['reasoning'] = reasoning_value if data.get('timestamp'): try: float(data['timestamp']) except ValueError: print(f"Warning: Parsed timestamp '{data['timestamp']}' is not a valid number.") print(f"Parsed LLM output (Using String Manipulation for Reasoning): {data}") return data def process_query_and_get_video(query_text): """ Orchestrates RAG, LLM query, parsing, and video extraction. """ print(f"\n--- Processing query: '{query_text}' ---") # 1. RAG Query print("Step 1: Performing RAG query...") rag_results = rag_query(qdrant_client, QDRANT_COLLECTION_NAME, query_text) if "error" in rag_results or not rag_results.get("results"): error_msg = rag_results.get('error', 'No relevant segments found by RAG.') print(f"RAG Error/No Results: {error_msg}") return f"Error during RAG search: {error_msg}", None print(f"RAG query successful. Found {len(rag_results['results'])} results.") # Format LLM Prompt print("Step 2: Formatting prompt for LLM...") prompt = f"""You are tasked with selecting the most relevant information from a set of video subtitle segments to answer a query. QUERY (also seen below): "{query_text}" For each result provided, evaluate how well it directly addresses the definition or explanation related to the query. Pay attention to: 1. Clarity of explanation 2. Relevance to the query 3. Completeness of information From the provided results, select the SINGLE BEST match that most directly answers the query. Format your response STRICTLY as follows, with each field on a new line: {{Best Result: [video_id]}} {{Timestamp: [timestamp]}} {{Content: [subtitle text]}} {{Reasoning: [Brief explanation of why this result best answers the query]}} {rag_results}""" # 3. Call LLM print("Step 3: Querying the LLM...") try: output = llm.create_chat_completion( messages=[ {"role": "system", "content": "You are a helpful assistant designed to select the best video segment based on relevance to a query, following a specific output format."}, {"role": "user", "content": prompt}, ], temperature=0.1, max_tokens=300 ) llm_response_text = output['choices'][0]['message']['content'] print(f"LLM Response:\n{llm_response_text}") except Exception as e: print(f"Error during LLM call: {e}") return f"Error calling LLM: {e}", None # 4. Parse LLM Response print("Step 4: Parsing LLM response...") parsed_data = parse_llm_output(llm_response_text) video_id = parsed_data.get('video_id') timestamp_str = parsed_data.get('timestamp') reasoning = parsed_data.get('reasoning') if not video_id or not timestamp_str: print("Error: Could not parse required video_id or timestamp from LLM response.") fallback_reasoning = reasoning if reasoning else "Could not determine the best segment." error_msg = f"Failed to parse LLM response. LLM said:\n---\n{llm_response_text}\n---\nReasoning (if found): {fallback_reasoning}" return error_msg, None try: timestamp = float(timestamp_str) # Adjust timestamp slightly - start a bit earlier if possible start_time = max(0.0, timestamp - (VIDEO_SEGMENT_DURATION / 4)) except ValueError: print(f"Error: Could not convert parsed timestamp '{timestamp_str}' to float.") error_msg = f"Invalid timestamp format from LLM ('{timestamp_str}'). LLM reasoning (if found): {reasoning}" return error_msg, None final_reasoning = reasoning if reasoning else "No reasoning provided by LLM." # Extract Video Segment print(f"Step 5: Extracting video segment (ID: {video_id}, Start: {start_time:.2f}s, Duration: {VIDEO_SEGMENT_DURATION}s)...") global dataset video_path = extract_video_segment(video_id, start_time, VIDEO_SEGMENT_DURATION, dataset) if video_path and os.path.exists(video_path): print(f"Video segment extracted successfully: {video_path}") return final_reasoning, video_path else: print("Failed to extract video segment.") error_msg = f"{final_reasoning}\n\n(However, failed to extract the corresponding video segment for ID {video_id} at timestamp {timestamp_str}.)" return error_msg, None with gr.Blocks() as iface: gr.Markdown( """ # Lecture Videos Q&A Ask a question about the lectures. The system will find relevant segments using RAG and a fine-tuned LLM to select the best one, and display the corresponding video clip. """ ) with gr.Row(): query_input = gr.Textbox(label="Your Question", placeholder="Using only the videos, explain how ResNets work.") submit_button = gr.Button("Ask & Find Video") with gr.Row(): reasoning_output = gr.Markdown(label="LLM Reasoning") with gr.Row(): video_output = gr.Video(label="Relevant Video Segment") submit_button.click( fn=process_query_and_get_video, inputs=query_input, outputs=[reasoning_output, video_output] ) gr.Examples( examples=[ "Using only the videos, explain how ResNets work.", "Using only the videos, explain the advantages of CNNs over fully connected networks.", "Using only the videos, explain the the binary cross entropy loss function.", ], inputs=query_input, outputs=[reasoning_output, video_output], fn=process_query_and_get_video, cache_examples=False, ) print("Launching Gradio interface...") iface.launch(debug=True, share=False)