Spaces:
Running
Running
mitch
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
from llama_cpp import Llama
|
4 |
from qdrant_client import QdrantClient
|
5 |
from datasets import load_dataset
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
import cv2
|
|
|
8 |
import tempfile
|
9 |
import uuid
|
10 |
import re
|
11 |
import subprocess
|
12 |
import time
|
13 |
-
import traceback
|
14 |
|
15 |
# Configuration
|
16 |
QDRANT_COLLECTION_NAME = "video_frames"
|
@@ -53,8 +52,9 @@ except Exception as e:
|
|
53 |
|
54 |
print("Loading dataset stream...")
|
55 |
try:
|
|
|
56 |
dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)
|
57 |
-
print(f"Dataset loaded.")
|
58 |
except Exception as e:
|
59 |
print(f"Error loading dataset: {e}")
|
60 |
raise
|
@@ -85,7 +85,7 @@ def rag_query(client, collection_name, query_text, top_k=5, filter_condition=Non
|
|
85 |
if filter_condition:
|
86 |
search_params["filter"] = filter_condition
|
87 |
|
88 |
-
search_results = client.
|
89 |
|
90 |
formatted_results = []
|
91 |
for idx, result in enumerate(search_results):
|
@@ -105,69 +105,128 @@ def rag_query(client, collection_name, query_text, top_k=5, filter_condition=Non
|
|
105 |
}
|
106 |
except Exception as e:
|
107 |
print(f"Error during RAG query: {e}")
|
108 |
-
traceback.print_exc()
|
109 |
return {"error": str(e), "query": query_text, "results": []}
|
110 |
|
111 |
|
112 |
def extract_video_segment(video_id, start_time, duration, dataset):
|
113 |
"""
|
114 |
-
|
115 |
-
|
116 |
-
Uses FFmpeg with -ss before -i and -t.
|
117 |
"""
|
118 |
target_id = str(video_id)
|
119 |
-
|
120 |
-
|
121 |
start_time = float(start_time)
|
122 |
duration = float(duration)
|
123 |
|
124 |
unique_id = str(uuid.uuid4())
|
125 |
-
temp_dir = os.path.join(tempfile.gettempdir(), f"
|
126 |
os.makedirs(temp_dir, exist_ok=True)
|
127 |
-
|
|
|
128 |
output_path_ffmpeg = os.path.join(temp_dir, f"output_ffmpeg_{unique_id}.mp4")
|
129 |
|
130 |
-
print(f"Attempting to extract segment for video_id={target_id}, start={start_time
|
131 |
-
print(f"Looking for dataset key
|
132 |
print(f"Temporary directory: {temp_dir}")
|
133 |
|
134 |
-
found_sample = None
|
135 |
-
max_search_attempts = 1000 # Limit
|
136 |
-
print(f"Searching dataset stream for key matching pattern: {target_key_pattern.pattern}")
|
137 |
-
|
138 |
-
dataset_iterator = iter(dataset)
|
139 |
|
140 |
try:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
break
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
return None
|
161 |
|
162 |
-
|
|
|
|
|
163 |
final_output_path = None
|
164 |
try:
|
165 |
cmd = [
|
166 |
'ffmpeg',
|
167 |
-
'-
|
168 |
-
'-
|
169 |
-
'-
|
170 |
-
'-t', str(duration), # Duration of the segment
|
171 |
'-c:v', 'libx264',
|
172 |
'-profile:v', 'baseline',
|
173 |
'-level', '3.0',
|
@@ -176,10 +235,11 @@ def extract_video_segment(video_id, start_time, duration, dataset):
|
|
176 |
'-movflags', '+faststart',
|
177 |
'-c:a', 'aac',
|
178 |
'-b:a', '128k',
|
|
|
179 |
output_path_ffmpeg
|
180 |
]
|
181 |
print(f"Running FFmpeg command: {' '.join(cmd)}")
|
182 |
-
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120)
|
183 |
|
184 |
if result.returncode == 0 and os.path.exists(output_path_ffmpeg) and os.path.getsize(output_path_ffmpeg) > 0:
|
185 |
print(f"FFmpeg processing successful. Output: {output_path_ffmpeg}")
|
@@ -188,155 +248,167 @@ def extract_video_segment(video_id, start_time, duration, dataset):
|
|
188 |
print(f"FFmpeg error (Return Code: {result.returncode}):")
|
189 |
print(f"FFmpeg stdout:\n{result.stdout}")
|
190 |
print(f"FFmpeg stderr:\n{result.stderr}")
|
191 |
-
print("
|
192 |
-
|
|
|
|
|
|
|
|
|
193 |
|
194 |
except subprocess.TimeoutExpired:
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
197 |
except FileNotFoundError:
|
198 |
-
print("Error: ffmpeg command not found. Make sure FFmpeg is installed in
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
200 |
except Exception as e:
|
201 |
print(f"An unexpected error occurred during FFmpeg processing: {e}")
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
if os.path.exists(temp_video_path_full):
|
209 |
-
try:
|
210 |
-
os.remove(temp_video_path_full)
|
211 |
-
print(f"Cleaned up temporary full video: {temp_video_path_full}")
|
212 |
-
except Exception as e:
|
213 |
-
print(f"Warning: Could not remove temporary file {temp_video_path_full}: {e}")
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
if final_output_path != output_path_ffmpeg and os.path.exists(output_path_ffmpeg):
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
|
221 |
-
if final_output_path and os.path.exists(final_output_path):
|
222 |
print(f"Returning video segment path: {final_output_path}")
|
223 |
return final_output_path
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
return None
|
227 |
|
|
|
|
|
|
|
228 |
|
229 |
def parse_llm_output(text):
|
230 |
"""
|
231 |
-
Parses the LLM's structured output using
|
232 |
-
|
|
|
233 |
"""
|
234 |
data = {}
|
235 |
-
print(f"\nDEBUG: Raw text input to parse_llm_output:\n---\n{text}\n---")
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
if start_index != -1:
|
242 |
-
|
243 |
-
end_index = text.find('}',
|
244 |
|
245 |
if end_index != -1:
|
|
|
246 |
value = text[actual_marker_end : end_index]
|
|
|
247 |
value = value.strip()
|
248 |
if value.startswith('[') and value.endswith(']'):
|
249 |
-
value = value[1:-1]
|
250 |
value = value.strip('\'"“”')
|
251 |
-
|
|
|
252 |
else:
|
253 |
-
print(
|
254 |
else:
|
255 |
-
print(
|
256 |
-
return None
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
data['
|
262 |
-
data['reasoning'] = extract_field(text, 'Reasoning')
|
263 |
|
264 |
-
# Validation
|
265 |
if data.get('timestamp'):
|
266 |
try:
|
267 |
float(data['timestamp'])
|
268 |
except ValueError:
|
269 |
print(f"Warning: Parsed timestamp '{data['timestamp']}' is not a valid number.")
|
270 |
-
data['timestamp'] = None
|
271 |
|
272 |
-
print(f"Parsed LLM output: {data}")
|
273 |
return data
|
274 |
|
275 |
|
276 |
def process_query_and_get_video(query_text):
|
277 |
"""
|
278 |
Orchestrates RAG, LLM query, parsing, and video extraction.
|
279 |
-
Returns the path to the extracted video segment or None on failure.
|
280 |
-
Prints status and errors directly.
|
281 |
"""
|
282 |
print(f"\n--- Processing query: '{query_text}' ---")
|
283 |
|
284 |
-
#
|
285 |
-
if 'qdrant_client' not in globals() or qdrant_client is None:
|
286 |
-
print("Setup Error: Qdrant client is not initialized. Cannot proceed.")
|
287 |
-
return None
|
288 |
-
if 'llm' not in globals() or llm is None:
|
289 |
-
print("Setup Error: LLM is not initialized. Cannot proceed.")
|
290 |
-
return None
|
291 |
-
if 'embedding_model' not in globals() or embedding_model is None:
|
292 |
-
print("Setup Error: Embedding model is not initialized. Cannot proceed.")
|
293 |
-
return None
|
294 |
-
if 'dataset' not in globals() or dataset is None:
|
295 |
-
print("Setup Error: Dataset is not loaded. Cannot proceed.")
|
296 |
-
return None
|
297 |
-
|
298 |
-
# RAG Query
|
299 |
print("Step 1: Performing RAG query...")
|
300 |
rag_results = rag_query(qdrant_client, QDRANT_COLLECTION_NAME, query_text)
|
301 |
|
302 |
if "error" in rag_results or not rag_results.get("results"):
|
303 |
error_msg = rag_results.get('error', 'No relevant segments found by RAG.')
|
304 |
print(f"RAG Error/No Results: {error_msg}")
|
305 |
-
return None
|
306 |
|
307 |
print(f"RAG query successful. Found {len(rag_results['results'])} results.")
|
308 |
|
309 |
# Format LLM Prompt
|
310 |
print("Step 2: Formatting prompt for LLM...")
|
311 |
-
results_for_llm = "\n".join([
|
312 |
-
f"Rank: {r['rank']}, Score: {r['score']:.4f}, Video ID: {r['video_id']}, Timestamp: {r['timestamp']}, Subtitle: {r['subtitle']}"
|
313 |
-
for r in rag_results['results']
|
314 |
-
])
|
315 |
-
|
316 |
prompt = f"""You are tasked with selecting the most relevant information from a set of video subtitle segments to answer a query.
|
317 |
-
|
318 |
-
QUERY: "{query_text}"
|
319 |
-
|
320 |
-
Here are the relevant video segments found:
|
321 |
-
---
|
322 |
-
{results_for_llm}
|
323 |
-
---
|
324 |
-
|
325 |
For each result provided, evaluate how well it directly addresses the definition or explanation related to the query. Pay attention to:
|
326 |
1. Clarity of explanation
|
327 |
2. Relevance to the query
|
328 |
3. Completeness of information
|
329 |
-
|
330 |
From the provided results, select the SINGLE BEST match that most directly answers the query.
|
331 |
-
|
332 |
Format your response STRICTLY as follows, with each field on a new line:
|
333 |
{{Best Result: [video_id]}}
|
334 |
{{Timestamp: [timestamp]}}
|
335 |
-
{{Content: [subtitle text
|
336 |
{{Reasoning: [Brief explanation of why this result best answers the query]}}
|
337 |
-
"""
|
338 |
|
339 |
-
# Call LLM
|
340 |
print("Step 3: Querying the LLM...")
|
341 |
try:
|
342 |
output = llm.create_chat_completion(
|
@@ -347,56 +419,49 @@ Format your response STRICTLY as follows, with each field on a new line:
|
|
347 |
temperature=0.1,
|
348 |
max_tokens=300
|
349 |
)
|
350 |
-
llm_response_text = output['choices'][0]['message']['content']
|
351 |
-
print(f"LLM Response:\n
|
352 |
except Exception as e:
|
353 |
print(f"Error during LLM call: {e}")
|
354 |
-
|
355 |
-
return None
|
356 |
|
357 |
-
# Parse LLM Response
|
358 |
print("Step 4: Parsing LLM response...")
|
359 |
parsed_data = parse_llm_output(llm_response_text)
|
360 |
|
361 |
video_id = parsed_data.get('video_id')
|
362 |
timestamp_str = parsed_data.get('timestamp')
|
363 |
-
# Get reasoning/content
|
364 |
reasoning = parsed_data.get('reasoning')
|
365 |
-
content = parsed_data.get('content')
|
366 |
-
|
367 |
-
if reasoning:
|
368 |
-
print(f"LLM Reasoning: {reasoning}")
|
369 |
-
|
370 |
-
if content:
|
371 |
-
print(f"LLM Selected Content: {content}")
|
372 |
-
|
373 |
|
374 |
if not video_id or not timestamp_str:
|
375 |
print("Error: Could not parse required video_id or timestamp from LLM response.")
|
376 |
-
|
377 |
-
|
|
|
378 |
|
379 |
try:
|
380 |
timestamp = float(timestamp_str)
|
381 |
-
|
382 |
-
|
383 |
-
print(f"Calculated segment start time: {start_time:.2f}s")
|
384 |
-
|
385 |
except ValueError:
|
386 |
print(f"Error: Could not convert parsed timestamp '{timestamp_str}' to float.")
|
387 |
-
|
|
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
|
|
|
|
|
|
392 |
|
393 |
if video_path and os.path.exists(video_path):
|
394 |
print(f"Video segment extracted successfully: {video_path}")
|
395 |
-
return video_path
|
396 |
else:
|
397 |
print("Failed to extract video segment.")
|
398 |
-
|
399 |
-
|
400 |
|
401 |
with gr.Blocks() as iface:
|
402 |
gr.Markdown(
|
@@ -410,7 +475,7 @@ with gr.Blocks() as iface:
|
|
410 |
query_input = gr.Textbox(label="Your Question", placeholder="e.g., What is a convolutional neural network?")
|
411 |
submit_button = gr.Button("Ask & Find Video")
|
412 |
with gr.Row():
|
413 |
-
video_output = gr.Video(label="Relevant Video Segment"
|
414 |
|
415 |
submit_button.click(
|
416 |
fn=process_query_and_get_video,
|
@@ -425,7 +490,7 @@ with gr.Blocks() as iface:
|
|
425 |
"Using only the videos, explain the the binary cross entropy loss function.",
|
426 |
],
|
427 |
inputs=query_input,
|
428 |
-
outputs=video_output,
|
429 |
fn=process_query_and_get_video,
|
430 |
cache_examples=False,
|
431 |
)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from llama_cpp import Llama
|
3 |
from qdrant_client import QdrantClient
|
4 |
from datasets import load_dataset
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import cv2
|
7 |
+
import os
|
8 |
import tempfile
|
9 |
import uuid
|
10 |
import re
|
11 |
import subprocess
|
12 |
import time
|
|
|
13 |
|
14 |
# Configuration
|
15 |
QDRANT_COLLECTION_NAME = "video_frames"
|
|
|
52 |
|
53 |
print("Loading dataset stream...")
|
54 |
try:
|
55 |
+
# Load video dataset
|
56 |
dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)
|
57 |
+
print(f"Dataset loaded. First item example: {next(iter(dataset))['__key__']}")
|
58 |
except Exception as e:
|
59 |
print(f"Error loading dataset: {e}")
|
60 |
raise
|
|
|
85 |
if filter_condition:
|
86 |
search_params["filter"] = filter_condition
|
87 |
|
88 |
+
search_results = client.search(**search_params)
|
89 |
|
90 |
formatted_results = []
|
91 |
for idx, result in enumerate(search_results):
|
|
|
105 |
}
|
106 |
except Exception as e:
|
107 |
print(f"Error during RAG query: {e}")
|
|
|
108 |
return {"error": str(e), "query": query_text, "results": []}
|
109 |
|
110 |
|
111 |
def extract_video_segment(video_id, start_time, duration, dataset):
|
112 |
"""
|
113 |
+
Generator function that extracts and yields a single video segment file path.
|
114 |
+
Modified to return a single path suitable for Gradio.
|
|
|
115 |
"""
|
116 |
target_id = str(video_id)
|
117 |
+
target_key = f"videos/{target_id}/{target_id}"
|
|
|
118 |
start_time = float(start_time)
|
119 |
duration = float(duration)
|
120 |
|
121 |
unique_id = str(uuid.uuid4())
|
122 |
+
temp_dir = os.path.join(tempfile.gettempdir(), f"gradio_video_{unique_id}")
|
123 |
os.makedirs(temp_dir, exist_ok=True)
|
124 |
+
temp_video_path = os.path.join(temp_dir, f"{target_id}_full_{unique_id}.mp4")
|
125 |
+
output_path_opencv = os.path.join(temp_dir, f"output_opencv_{unique_id}.mp4")
|
126 |
output_path_ffmpeg = os.path.join(temp_dir, f"output_ffmpeg_{unique_id}.mp4")
|
127 |
|
128 |
+
print(f"Attempting to extract segment for video_id={target_id}, start={start_time}, duration={duration}")
|
129 |
+
print(f"Looking for dataset key: {target_key}")
|
130 |
print(f"Temporary directory: {temp_dir}")
|
131 |
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
try:
|
134 |
+
found = False
|
135 |
+
retries = 3
|
136 |
+
dataset_iterator = iter(dataset)
|
137 |
+
|
138 |
+
for _ in range(retries * 100):
|
139 |
+
try:
|
140 |
+
sample = next(dataset_iterator)
|
141 |
+
if '__key__' in sample and sample['__key__'] == target_key:
|
142 |
+
found = True
|
143 |
+
print(f"Found video key {target_key}. Saving to {temp_video_path}...")
|
144 |
+
with open(temp_video_path, 'wb') as f:
|
145 |
+
f.write(sample['mp4'])
|
146 |
+
print(f"Video saved successfully ({os.path.getsize(temp_video_path)} bytes).")
|
147 |
+
break
|
148 |
+
except StopIteration:
|
149 |
+
print("Reached end of dataset stream without finding the video.")
|
150 |
+
break
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Error iterating dataset: {e}")
|
153 |
+
time.sleep(1)
|
154 |
+
|
155 |
+
|
156 |
+
if not found:
|
157 |
+
print(f"Could not find video with ID {target_id} (key: {target_key}) in the dataset stream after {_ + 1} attempts.")
|
158 |
+
return None
|
159 |
+
|
160 |
+
# Process the saved video
|
161 |
+
if not os.path.exists(temp_video_path) or os.path.getsize(temp_video_path) == 0:
|
162 |
+
print(f"Temporary video file {temp_video_path} is missing or empty.")
|
163 |
+
return None
|
164 |
+
|
165 |
+
cap = cv2.VideoCapture(temp_video_path)
|
166 |
+
if not cap.isOpened():
|
167 |
+
print(f"Error opening video file with OpenCV: {temp_video_path}")
|
168 |
+
return None
|
169 |
+
|
170 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
171 |
+
if fps <= 0:
|
172 |
+
print(f"Warning: Invalid FPS ({fps}) detected for {temp_video_path}. Assuming 30 FPS.")
|
173 |
+
fps = 30
|
174 |
+
|
175 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
176 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
177 |
+
total_vid_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
178 |
+
vid_duration = total_vid_frames / fps if fps > 0 else 0
|
179 |
+
|
180 |
+
print(f"Video properties: {width}x{height} @ {fps:.2f}fps, Total Duration: {vid_duration:.2f}s")
|
181 |
+
|
182 |
+
start_frame = int(start_time * fps)
|
183 |
+
end_frame = int((start_time + duration) * fps)
|
184 |
+
|
185 |
+
# Clamp frame numbers to valid range
|
186 |
+
start_frame = max(0, start_frame)
|
187 |
+
end_frame = min(total_vid_frames, end_frame)
|
188 |
+
|
189 |
+
if start_frame >= total_vid_frames or start_frame >= end_frame:
|
190 |
+
print(f"Calculated start frame ({start_frame}) is beyond video length ({total_vid_frames}) or segment is invalid.")
|
191 |
+
cap.release()
|
192 |
+
return None
|
193 |
+
|
194 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
|
195 |
+
frames_to_write = end_frame - start_frame
|
196 |
+
|
197 |
+
print(f"Extracting frames from {start_frame} to {end_frame} ({frames_to_write} frames)")
|
198 |
+
|
199 |
+
# Try OpenCV first
|
200 |
+
fourcc_opencv = cv2.VideoWriter_fourcc(*'mp4v') # mp4v is often more compatible than avc1 with base OpenCV
|
201 |
+
out_opencv = cv2.VideoWriter(output_path_opencv, fourcc_opencv, fps, (width, height))
|
202 |
+
|
203 |
+
if not out_opencv.isOpened():
|
204 |
+
print("Error opening OpenCV VideoWriter with mp4v.")
|
205 |
+
cap.release()
|
206 |
+
return None
|
207 |
+
|
208 |
+
frames_written_opencv = 0
|
209 |
+
while frames_written_opencv < frames_to_write:
|
210 |
+
ret, frame = cap.read()
|
211 |
+
if not ret:
|
212 |
+
print("Warning: Ran out of frames before reaching target end frame.")
|
213 |
break
|
214 |
+
out_opencv.write(frame)
|
215 |
+
frames_written_opencv += 1
|
216 |
|
217 |
+
out_opencv.release()
|
218 |
+
print(f"OpenCV finished writing {frames_written_opencv} frames to {output_path_opencv}")
|
|
|
219 |
|
220 |
+
cap.release()
|
221 |
+
|
222 |
+
# FFmpeg
|
223 |
final_output_path = None
|
224 |
try:
|
225 |
cmd = [
|
226 |
'ffmpeg',
|
227 |
+
'-ss', str(start_time), # Start time
|
228 |
+
'-i', temp_video_path, # Input file (original downloaded)
|
229 |
+
'-t', str(duration), # Duration of the segment
|
|
|
230 |
'-c:v', 'libx264',
|
231 |
'-profile:v', 'baseline',
|
232 |
'-level', '3.0',
|
|
|
235 |
'-movflags', '+faststart',
|
236 |
'-c:a', 'aac',
|
237 |
'-b:a', '128k',
|
238 |
+
'-y',
|
239 |
output_path_ffmpeg
|
240 |
]
|
241 |
print(f"Running FFmpeg command: {' '.join(cmd)}")
|
242 |
+
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120) # Add timeout
|
243 |
|
244 |
if result.returncode == 0 and os.path.exists(output_path_ffmpeg) and os.path.getsize(output_path_ffmpeg) > 0:
|
245 |
print(f"FFmpeg processing successful. Output: {output_path_ffmpeg}")
|
|
|
248 |
print(f"FFmpeg error (Return Code: {result.returncode}):")
|
249 |
print(f"FFmpeg stdout:\n{result.stdout}")
|
250 |
print(f"FFmpeg stderr:\n{result.stderr}")
|
251 |
+
print("Falling back to OpenCV output.")
|
252 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
253 |
+
final_output_path = output_path_opencv
|
254 |
+
else:
|
255 |
+
print("OpenCV output is also invalid or empty.")
|
256 |
+
final_output_path = None
|
257 |
|
258 |
except subprocess.TimeoutExpired:
|
259 |
+
print("FFmpeg command timed out.")
|
260 |
+
print("Falling back to OpenCV output.")
|
261 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
262 |
+
final_output_path = output_path_opencv
|
263 |
+
else:
|
264 |
+
print("OpenCV output is also invalid or empty.")
|
265 |
+
final_output_path = None
|
266 |
except FileNotFoundError:
|
267 |
+
print("Error: ffmpeg command not found. Make sure FFmpeg is installed and in your system's PATH.")
|
268 |
+
print("Falling back to OpenCV output.")
|
269 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
270 |
+
final_output_path = output_path_opencv
|
271 |
+
else:
|
272 |
+
print("OpenCV output is also invalid or empty.")
|
273 |
+
final_output_path = None
|
274 |
except Exception as e:
|
275 |
print(f"An unexpected error occurred during FFmpeg processing: {e}")
|
276 |
+
print("Falling back to OpenCV output.")
|
277 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
278 |
+
final_output_path = output_path_opencv
|
279 |
+
else:
|
280 |
+
print("OpenCV output is also invalid or empty.")
|
281 |
+
final_output_path = None
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
if os.path.exists(temp_video_path):
|
284 |
+
try:
|
285 |
+
os.remove(temp_video_path)
|
286 |
+
print(f"Cleaned up temporary full video: {temp_video_path}")
|
287 |
+
except Exception as e:
|
288 |
+
print(f"Warning: Could not remove temporary file {temp_video_path}: {e}")
|
289 |
+
|
290 |
+
# If FFmpeg failed
|
291 |
if final_output_path != output_path_ffmpeg and os.path.exists(output_path_ffmpeg):
|
292 |
+
try:
|
293 |
+
os.remove(output_path_ffmpeg)
|
294 |
+
except Exception as e:
|
295 |
+
print(f"Warning: Could not remove failed ffmpeg output {output_path_ffmpeg}: {e}")
|
296 |
|
|
|
297 |
print(f"Returning video segment path: {final_output_path}")
|
298 |
return final_output_path
|
299 |
+
|
300 |
+
except Exception as e:
|
301 |
+
print(f"Error processing video segment for {video_id}: {e}")
|
302 |
+
import traceback
|
303 |
+
traceback.print_exc()
|
304 |
+
if 'cap' in locals() and cap.isOpened(): cap.release()
|
305 |
+
if 'out_opencv' in locals() and out_opencv.isOpened(): out_opencv.release()
|
306 |
+
if os.path.exists(temp_video_path): os.remove(temp_video_path)
|
307 |
+
if os.path.exists(output_path_opencv): os.remove(output_path_opencv)
|
308 |
+
if os.path.exists(output_path_ffmpeg): os.remove(output_path_ffmpeg)
|
309 |
return None
|
310 |
|
311 |
+
QDRANT_COLLECTION_NAME = "video_frames"
|
312 |
+
VIDEO_SEGMENT_DURATION = 40 # Extract 40 seconds around the timestamp
|
313 |
+
|
314 |
|
315 |
def parse_llm_output(text):
|
316 |
"""
|
317 |
+
Parses the LLM's structured output using a mix of regex for simple
|
318 |
+
fields (video_id, timestamp) and string manipulation for reasoning
|
319 |
+
as a workaround for regex matching issues.
|
320 |
"""
|
321 |
data = {}
|
|
|
322 |
|
323 |
+
# Parse video_id and timestamp with regex
|
324 |
+
simple_patterns = {
|
325 |
+
'video_id': r"\{Best Result:\s*\[?([^\]\}]+)\]?\s*\}",
|
326 |
+
'timestamp': r"\{Timestamp:\s*\[?([^\]\}]+)\]?\s*\}",
|
327 |
+
}
|
328 |
+
for key, pattern in simple_patterns.items():
|
329 |
+
match = re.search(pattern, text, re.IGNORECASE)
|
330 |
+
if match:
|
331 |
+
value = match.group(1).strip()
|
332 |
+
value = value.strip('\'"“”')
|
333 |
+
data[key] = value
|
334 |
+
else:
|
335 |
+
print(f"Warning: Could not parse '{key}' using regex pattern: {pattern}")
|
336 |
+
data[key] = None
|
337 |
+
|
338 |
+
# Parse reasoning
|
339 |
+
reasoning_value = None
|
340 |
+
try:
|
341 |
+
key_marker_lower = "{reasoning:"
|
342 |
+
start_index = text.lower().find(key_marker_lower)
|
343 |
|
344 |
if start_index != -1:
|
345 |
+
search_start_for_brace = start_index + len(key_marker_lower)
|
346 |
+
end_index = text.find('}', search_start_for_brace)
|
347 |
|
348 |
if end_index != -1:
|
349 |
+
actual_marker_end = start_index + len(key_marker_lower)
|
350 |
value = text[actual_marker_end : end_index]
|
351 |
+
|
352 |
value = value.strip()
|
353 |
if value.startswith('[') and value.endswith(']'):
|
354 |
+
value = value[1:-1]
|
355 |
value = value.strip('\'"“”')
|
356 |
+
value = value.strip()
|
357 |
+
reasoning_value = value
|
358 |
else:
|
359 |
+
print("Warning: Found '{reasoning:' marker but no closing '}' found afterwards.")
|
360 |
else:
|
361 |
+
print("Warning: Marker '{reasoning:' not found in text.")
|
|
|
362 |
|
363 |
+
except Exception as e:
|
364 |
+
print(f"Error during string manipulation parsing for reasoning: {e}")
|
365 |
+
|
366 |
+
data['reasoning'] = reasoning_value
|
|
|
367 |
|
|
|
368 |
if data.get('timestamp'):
|
369 |
try:
|
370 |
float(data['timestamp'])
|
371 |
except ValueError:
|
372 |
print(f"Warning: Parsed timestamp '{data['timestamp']}' is not a valid number.")
|
|
|
373 |
|
374 |
+
print(f"Parsed LLM output (Using String Manipulation for Reasoning): {data}")
|
375 |
return data
|
376 |
|
377 |
|
378 |
def process_query_and_get_video(query_text):
|
379 |
"""
|
380 |
Orchestrates RAG, LLM query, parsing, and video extraction.
|
|
|
|
|
381 |
"""
|
382 |
print(f"\n--- Processing query: '{query_text}' ---")
|
383 |
|
384 |
+
# 1. RAG Query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
print("Step 1: Performing RAG query...")
|
386 |
rag_results = rag_query(qdrant_client, QDRANT_COLLECTION_NAME, query_text)
|
387 |
|
388 |
if "error" in rag_results or not rag_results.get("results"):
|
389 |
error_msg = rag_results.get('error', 'No relevant segments found by RAG.')
|
390 |
print(f"RAG Error/No Results: {error_msg}")
|
391 |
+
return f"Error during RAG search: {error_msg}", None
|
392 |
|
393 |
print(f"RAG query successful. Found {len(rag_results['results'])} results.")
|
394 |
|
395 |
# Format LLM Prompt
|
396 |
print("Step 2: Formatting prompt for LLM...")
|
|
|
|
|
|
|
|
|
|
|
397 |
prompt = f"""You are tasked with selecting the most relevant information from a set of video subtitle segments to answer a query.
|
398 |
+
QUERY (also seen below): "{query_text}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
For each result provided, evaluate how well it directly addresses the definition or explanation related to the query. Pay attention to:
|
400 |
1. Clarity of explanation
|
401 |
2. Relevance to the query
|
402 |
3. Completeness of information
|
|
|
403 |
From the provided results, select the SINGLE BEST match that most directly answers the query.
|
|
|
404 |
Format your response STRICTLY as follows, with each field on a new line:
|
405 |
{{Best Result: [video_id]}}
|
406 |
{{Timestamp: [timestamp]}}
|
407 |
+
{{Content: [subtitle text]}}
|
408 |
{{Reasoning: [Brief explanation of why this result best answers the query]}}
|
409 |
+
{rag_results}"""
|
410 |
|
411 |
+
# 3. Call LLM
|
412 |
print("Step 3: Querying the LLM...")
|
413 |
try:
|
414 |
output = llm.create_chat_completion(
|
|
|
419 |
temperature=0.1,
|
420 |
max_tokens=300
|
421 |
)
|
422 |
+
llm_response_text = output['choices'][0]['message']['content']
|
423 |
+
print(f"LLM Response:\n{llm_response_text}")
|
424 |
except Exception as e:
|
425 |
print(f"Error during LLM call: {e}")
|
426 |
+
return f"Error calling LLM: {e}", None
|
|
|
427 |
|
428 |
+
# 4. Parse LLM Response
|
429 |
print("Step 4: Parsing LLM response...")
|
430 |
parsed_data = parse_llm_output(llm_response_text)
|
431 |
|
432 |
video_id = parsed_data.get('video_id')
|
433 |
timestamp_str = parsed_data.get('timestamp')
|
|
|
434 |
reasoning = parsed_data.get('reasoning')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
|
436 |
if not video_id or not timestamp_str:
|
437 |
print("Error: Could not parse required video_id or timestamp from LLM response.")
|
438 |
+
fallback_reasoning = reasoning if reasoning else "Could not determine the best segment."
|
439 |
+
error_msg = f"Failed to parse LLM response. LLM said:\n---\n{llm_response_text}\n---\nReasoning (if found): {fallback_reasoning}"
|
440 |
+
return error_msg, None
|
441 |
|
442 |
try:
|
443 |
timestamp = float(timestamp_str)
|
444 |
+
# Adjust timestamp slightly - start a bit earlier if possible
|
445 |
+
start_time = max(0.0, timestamp - (VIDEO_SEGMENT_DURATION / 4))
|
|
|
|
|
446 |
except ValueError:
|
447 |
print(f"Error: Could not convert parsed timestamp '{timestamp_str}' to float.")
|
448 |
+
error_msg = f"Invalid timestamp format from LLM ('{timestamp_str}'). LLM reasoning (if found): {reasoning}"
|
449 |
+
return error_msg, None
|
450 |
|
451 |
+
final_reasoning = reasoning if reasoning else "No reasoning provided by LLM."
|
452 |
+
|
453 |
+
# Extract Video Segment
|
454 |
+
print(f"Step 5: Extracting video segment (ID: {video_id}, Start: {start_time:.2f}s, Duration: {VIDEO_SEGMENT_DURATION}s)...")
|
455 |
+
global dataset
|
456 |
+
video_path = extract_video_segment(video_id, start_time, VIDEO_SEGMENT_DURATION, dataset)
|
457 |
|
458 |
if video_path and os.path.exists(video_path):
|
459 |
print(f"Video segment extracted successfully: {video_path}")
|
460 |
+
return final_reasoning, video_path
|
461 |
else:
|
462 |
print("Failed to extract video segment.")
|
463 |
+
error_msg = f"{final_reasoning}\n\n(However, failed to extract the corresponding video segment for ID {video_id} at timestamp {timestamp_str}.)"
|
464 |
+
return error_msg, None
|
465 |
|
466 |
with gr.Blocks() as iface:
|
467 |
gr.Markdown(
|
|
|
475 |
query_input = gr.Textbox(label="Your Question", placeholder="e.g., What is a convolutional neural network?")
|
476 |
submit_button = gr.Button("Ask & Find Video")
|
477 |
with gr.Row():
|
478 |
+
video_output = gr.Video(label="Relevant Video Segment")
|
479 |
|
480 |
submit_button.click(
|
481 |
fn=process_query_and_get_video,
|
|
|
490 |
"Using only the videos, explain the the binary cross entropy loss function.",
|
491 |
],
|
492 |
inputs=query_input,
|
493 |
+
outputs= video_output,
|
494 |
fn=process_query_and_get_video,
|
495 |
cache_examples=False,
|
496 |
)
|