Spaces:
Running
Running
mitch
commited on
Added app.py
Browse files- .idea/.gitignore +8 -0
- .idea/ai_class_app.iml +8 -0
- .idea/inspectionProfiles/Project_Default.xml +44 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +7 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- app.py +542 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/ai_class_app.iml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="Python 3.13" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="31">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="pydot" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="joblib" />
|
10 |
+
<item index="2" class="java.lang.String" itemvalue="scikit-learn" />
|
11 |
+
<item index="3" class="java.lang.String" itemvalue="nltk" />
|
12 |
+
<item index="4" class="java.lang.String" itemvalue="urlextract" />
|
13 |
+
<item index="5" class="java.lang.String" itemvalue="google-cloud-storage" />
|
14 |
+
<item index="6" class="java.lang.String" itemvalue="numpy" />
|
15 |
+
<item index="7" class="java.lang.String" itemvalue="requests" />
|
16 |
+
<item index="8" class="java.lang.String" itemvalue="tensorflow" />
|
17 |
+
<item index="9" class="java.lang.String" itemvalue="tensorflow-serving-api" />
|
18 |
+
<item index="10" class="java.lang.String" itemvalue="tensorflow-hub" />
|
19 |
+
<item index="11" class="java.lang.String" itemvalue="tensorflow-datasets" />
|
20 |
+
<item index="12" class="java.lang.String" itemvalue="nbdime" />
|
21 |
+
<item index="13" class="java.lang.String" itemvalue="graphviz" />
|
22 |
+
<item index="14" class="java.lang.String" itemvalue="jupyterlab" />
|
23 |
+
<item index="15" class="java.lang.String" itemvalue="xgboost" />
|
24 |
+
<item index="16" class="java.lang.String" itemvalue="keras-tuner" />
|
25 |
+
<item index="17" class="java.lang.String" itemvalue="ipywidgets" />
|
26 |
+
<item index="18" class="java.lang.String" itemvalue="scipy" />
|
27 |
+
<item index="19" class="java.lang.String" itemvalue="tensorboard-plugin-profile" />
|
28 |
+
<item index="20" class="java.lang.String" itemvalue="transformers" />
|
29 |
+
<item index="21" class="java.lang.String" itemvalue="gymnasium" />
|
30 |
+
<item index="22" class="java.lang.String" itemvalue="google-cloud-aiplatform" />
|
31 |
+
<item index="23" class="java.lang.String" itemvalue="pandas" />
|
32 |
+
<item index="24" class="java.lang.String" itemvalue="tqdm" />
|
33 |
+
<item index="25" class="java.lang.String" itemvalue="tensorboard" />
|
34 |
+
<item index="26" class="java.lang.String" itemvalue="swig" />
|
35 |
+
<item index="27" class="java.lang.String" itemvalue="matplotlib" />
|
36 |
+
<item index="28" class="java.lang.String" itemvalue="statsmodels" />
|
37 |
+
<item index="29" class="java.lang.String" itemvalue="Pillow" />
|
38 |
+
<item index="30" class="java.lang.String" itemvalue="numexpr" />
|
39 |
+
</list>
|
40 |
+
</value>
|
41 |
+
</option>
|
42 |
+
</inspection_tool>
|
43 |
+
</profile>
|
44 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="Black">
|
4 |
+
<option name="sdkName" value="Python 3.13" />
|
5 |
+
</component>
|
6 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.13" project-jdk-type="Python SDK" />
|
7 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/ai_class_app.iml" filepath="$PROJECT_DIR$/.idea/ai_class_app.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
app.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from llama_cpp import Llama
|
3 |
+
from qdrant_client import QdrantClient
|
4 |
+
from datasets import load_dataset
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import cv2
|
7 |
+
import os
|
8 |
+
import tempfile
|
9 |
+
import uuid
|
10 |
+
import re
|
11 |
+
import subprocess
|
12 |
+
import time
|
13 |
+
|
14 |
+
print("Initializing LLM...")
|
15 |
+
# Ensure the model file exists or download will be attempted
|
16 |
+
try:
|
17 |
+
llm = Llama.from_pretrained(
|
18 |
+
repo_id="m1tch/gemma-finetune-ai_class_gguf",
|
19 |
+
filename="gemma-3_ai_class.Q8_0.gguf",
|
20 |
+
n_gpu_layers=-1, # Use -1 to offload all possible layers to GPU
|
21 |
+
n_ctx=2048,
|
22 |
+
verbose=False # Set to True for more detailed llama.cpp output
|
23 |
+
)
|
24 |
+
print("LLM initialized successfully.")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error initializing LLM: {e}")
|
27 |
+
# Optionally raise the exception or handle it gracefully
|
28 |
+
raise
|
29 |
+
|
30 |
+
print("Connecting to Qdrant...")
|
31 |
+
try:
|
32 |
+
qdrant_client = QdrantClient(
|
33 |
+
url="https://2c18d413-cbb5-441c-b060-4c8c2302dcde.us-east4-0.gcp.cloud.qdrant.io:6333/",
|
34 |
+
# It's generally safer to load API keys from environment variables or a config file
|
35 |
+
api_key=os.environ.get("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.b86GHyWqFDw63UkrR98LlY2GU4XdVyOAlv_qpm9KKTw"),
|
36 |
+
timeout=60 # Increase timeout if experiencing connection issues
|
37 |
+
)
|
38 |
+
# Test connection
|
39 |
+
qdrant_client.get_collections()
|
40 |
+
print("Qdrant connection successful.")
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error connecting to Qdrant: {e}")
|
43 |
+
raise
|
44 |
+
|
45 |
+
print("Loading dataset stream...")
|
46 |
+
try:
|
47 |
+
# Load video dataset - ensure you have internet access
|
48 |
+
# streaming=True avoids downloading the entire dataset at once
|
49 |
+
dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)
|
50 |
+
# Peek at the first item to ensure the stream works
|
51 |
+
print(f"Dataset loaded. First item example: {next(iter(dataset))['__key__']}")
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error loading dataset: {e}")
|
54 |
+
raise
|
55 |
+
|
56 |
+
try:
|
57 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
58 |
+
print("Sentence Transformer model loaded.")
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Error loading Sentence Transformer model: {e}")
|
61 |
+
raise
|
62 |
+
|
63 |
+
def rag_query(client, collection_name, query_text, top_k=5, filter_condition=None):
|
64 |
+
"""
|
65 |
+
Test RAG by querying the vector database with text. Returns a dictionary with search results and metadata.
|
66 |
+
Uses the pre-loaded embedding_model.
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
# Use the pre-loaded model
|
70 |
+
query_vector = embedding_model.encode(query_text).tolist()
|
71 |
+
|
72 |
+
search_params = {
|
73 |
+
"collection_name": collection_name,
|
74 |
+
"query_vector": query_vector,
|
75 |
+
"limit": top_k,
|
76 |
+
"with_payload": True,
|
77 |
+
"with_vectors": False
|
78 |
+
}
|
79 |
+
|
80 |
+
if filter_condition:
|
81 |
+
search_params["filter"] = filter_condition
|
82 |
+
|
83 |
+
search_results = client.search(**search_params)
|
84 |
+
|
85 |
+
formatted_results = []
|
86 |
+
for idx, result in enumerate(search_results):
|
87 |
+
formatted_results.append({
|
88 |
+
"rank": idx + 1,
|
89 |
+
"score": result.score,
|
90 |
+
"video_id": result.payload.get("video_id"),
|
91 |
+
"timestamp": result.payload.get("timestamp"),
|
92 |
+
"subtitle": result.payload.get("subtitle"),
|
93 |
+
"frame_number": result.payload.get("frame_number")
|
94 |
+
})
|
95 |
+
|
96 |
+
return {
|
97 |
+
"query": query_text,
|
98 |
+
"results": formatted_results,
|
99 |
+
"avg_score": sum(r.score for r in search_results) / len(search_results) if search_results else 0
|
100 |
+
}
|
101 |
+
except Exception as e:
|
102 |
+
print(f"Error during RAG query: {e}")
|
103 |
+
# Return a structure indicating error, but don't crash the app
|
104 |
+
return {"error": str(e), "query": query_text, "results": []}
|
105 |
+
|
106 |
+
|
107 |
+
def extract_video_segment(video_id, start_time, duration, dataset):
|
108 |
+
"""
|
109 |
+
Generator function that extracts and yields a single video segment file path.
|
110 |
+
Modified to return a single path suitable for Gradio.
|
111 |
+
"""
|
112 |
+
target_id = str(video_id) # Ensure it's a string
|
113 |
+
target_key = f"videos/{target_id}/{target_id}"
|
114 |
+
start_time = float(start_time) # Ensure it's a float
|
115 |
+
duration = float(duration)
|
116 |
+
|
117 |
+
unique_id = str(uuid.uuid4())
|
118 |
+
temp_dir = os.path.join(tempfile.gettempdir(), f"gradio_video_{unique_id}")
|
119 |
+
os.makedirs(temp_dir, exist_ok=True)
|
120 |
+
temp_video_path = os.path.join(temp_dir, f"{target_id}_full_{unique_id}.mp4")
|
121 |
+
output_path_opencv = os.path.join(temp_dir, f"output_opencv_{unique_id}.mp4")
|
122 |
+
output_path_ffmpeg = os.path.join(temp_dir, f"output_ffmpeg_{unique_id}.mp4")
|
123 |
+
|
124 |
+
print(f"Attempting to extract segment for video_id={target_id}, start={start_time}, duration={duration}")
|
125 |
+
print(f"Looking for dataset key: {target_key}")
|
126 |
+
print(f"Temporary directory: {temp_dir}")
|
127 |
+
|
128 |
+
|
129 |
+
try:
|
130 |
+
# --- Find and save the full video ---
|
131 |
+
found = False
|
132 |
+
retries = 3 # Retry finding the video in the stream
|
133 |
+
dataset_iterator = iter(dataset) # Get an iterator
|
134 |
+
|
135 |
+
for _ in range(retries * 5000): # Limit search iterations to avoid infinite loops in case of issues
|
136 |
+
try:
|
137 |
+
sample = next(dataset_iterator)
|
138 |
+
if '__key__' in sample and sample['__key__'] == target_key:
|
139 |
+
found = True
|
140 |
+
print(f"Found video key {target_key}. Saving to {temp_video_path}...")
|
141 |
+
with open(temp_video_path, 'wb') as f:
|
142 |
+
f.write(sample['mp4'])
|
143 |
+
print(f"Video saved successfully ({os.path.getsize(temp_video_path)} bytes).")
|
144 |
+
break
|
145 |
+
except StopIteration:
|
146 |
+
print("Reached end of dataset stream without finding the video.")
|
147 |
+
break
|
148 |
+
except Exception as e:
|
149 |
+
print(f"Error iterating dataset: {e}")
|
150 |
+
time.sleep(1) # Wait a bit before retrying iteration
|
151 |
+
|
152 |
+
|
153 |
+
if not found:
|
154 |
+
print(f"Could not find video with ID {target_id} (key: {target_key}) in the dataset stream after {_ + 1} attempts.")
|
155 |
+
# Attempt to reset the stream IF the dataset library supports it easily (often not simple with streaming)
|
156 |
+
# For now, we just report failure for this request.
|
157 |
+
# yield None # Don't yield here, let the outer function handle no video path
|
158 |
+
return None # Return None instead of yielding
|
159 |
+
|
160 |
+
# --- Process the saved video ---
|
161 |
+
if not os.path.exists(temp_video_path) or os.path.getsize(temp_video_path) == 0:
|
162 |
+
print(f"Temporary video file {temp_video_path} is missing or empty.")
|
163 |
+
return None
|
164 |
+
|
165 |
+
cap = cv2.VideoCapture(temp_video_path)
|
166 |
+
if not cap.isOpened():
|
167 |
+
print(f"Error opening video file with OpenCV: {temp_video_path}")
|
168 |
+
return None
|
169 |
+
|
170 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
171 |
+
# Handle cases where FPS might be 0 or invalid
|
172 |
+
if fps <= 0:
|
173 |
+
print(f"Warning: Invalid FPS ({fps}) detected for {temp_video_path}. Assuming 30 FPS.")
|
174 |
+
fps = 30 # Assume a default FPS
|
175 |
+
|
176 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
177 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
178 |
+
total_vid_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
179 |
+
vid_duration = total_vid_frames / fps if fps > 0 else 0
|
180 |
+
|
181 |
+
print(f"Video properties: {width}x{height} @ {fps:.2f}fps, Total Duration: {vid_duration:.2f}s")
|
182 |
+
|
183 |
+
start_frame = int(start_time * fps)
|
184 |
+
end_frame = int((start_time + duration) * fps)
|
185 |
+
|
186 |
+
# Clamp frame numbers to valid range
|
187 |
+
start_frame = max(0, start_frame)
|
188 |
+
end_frame = min(total_vid_frames, end_frame)
|
189 |
+
|
190 |
+
if start_frame >= total_vid_frames or start_frame >= end_frame:
|
191 |
+
print(f"Calculated start frame ({start_frame}) is beyond video length ({total_vid_frames}) or segment is invalid.")
|
192 |
+
cap.release()
|
193 |
+
return None
|
194 |
+
|
195 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
|
196 |
+
frames_to_write = end_frame - start_frame
|
197 |
+
|
198 |
+
print(f"Extracting frames from {start_frame} to {end_frame} ({frames_to_write} frames)")
|
199 |
+
|
200 |
+
# --- Try OpenCV writing first (fallback) ---
|
201 |
+
fourcc_opencv = cv2.VideoWriter_fourcc(*'mp4v') # mp4v is often more compatible than avc1 with base OpenCV
|
202 |
+
out_opencv = cv2.VideoWriter(output_path_opencv, fourcc_opencv, fps, (width, height))
|
203 |
+
|
204 |
+
if not out_opencv.isOpened():
|
205 |
+
print("Error opening OpenCV VideoWriter with mp4v.")
|
206 |
+
cap.release()
|
207 |
+
return None
|
208 |
+
|
209 |
+
frames_written_opencv = 0
|
210 |
+
while frames_written_opencv < frames_to_write:
|
211 |
+
ret, frame = cap.read()
|
212 |
+
if not ret:
|
213 |
+
print("Warning: Ran out of frames before reaching target end frame.")
|
214 |
+
break
|
215 |
+
out_opencv.write(frame)
|
216 |
+
frames_written_opencv += 1
|
217 |
+
|
218 |
+
out_opencv.release()
|
219 |
+
print(f"OpenCV finished writing {frames_written_opencv} frames to {output_path_opencv}")
|
220 |
+
|
221 |
+
# --- Release OpenCV capture ---
|
222 |
+
cap.release() # Release the capture object before trying ffmpeg
|
223 |
+
|
224 |
+
# --- Try converting/extracting with FFmpeg (preferred for compatibility) ---
|
225 |
+
final_output_path = None
|
226 |
+
try:
|
227 |
+
# Use ffmpeg to directly cut the segment and ensure web-compatible encoding
|
228 |
+
# This is generally more reliable than OpenCV for specific timings and codecs
|
229 |
+
cmd = [
|
230 |
+
'ffmpeg',
|
231 |
+
'-ss', str(start_time), # Start time
|
232 |
+
'-i', temp_video_path, # Input file (original downloaded)
|
233 |
+
'-t', str(duration), # Duration of the segment
|
234 |
+
'-c:v', 'libx264', # Video codec H.264
|
235 |
+
'-profile:v', 'baseline', # Baseline profile for broad compatibility
|
236 |
+
'-level', '3.0', # Level 3.0
|
237 |
+
'-preset', 'fast', # Encoding speed/quality trade-off
|
238 |
+
'-pix_fmt', 'yuv420p', # Pixel format for compatibility
|
239 |
+
'-movflags', '+faststart', # Optimize for web streaming
|
240 |
+
'-c:a', 'aac', # Audio codec AAC (common)
|
241 |
+
'-b:a', '128k', # Audio bitrate
|
242 |
+
'-y', # Overwrite output file if exists
|
243 |
+
output_path_ffmpeg
|
244 |
+
]
|
245 |
+
print(f"Running FFmpeg command: {' '.join(cmd)}")
|
246 |
+
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120) # Add timeout
|
247 |
+
|
248 |
+
if result.returncode == 0 and os.path.exists(output_path_ffmpeg) and os.path.getsize(output_path_ffmpeg) > 0:
|
249 |
+
print(f"FFmpeg processing successful. Output: {output_path_ffmpeg}")
|
250 |
+
final_output_path = output_path_ffmpeg
|
251 |
+
else:
|
252 |
+
print(f"FFmpeg error (Return Code: {result.returncode}):")
|
253 |
+
print(f"FFmpeg stdout:\n{result.stdout}")
|
254 |
+
print(f"FFmpeg stderr:\n{result.stderr}")
|
255 |
+
print("Falling back to OpenCV output.")
|
256 |
+
# Check if OpenCV output is valid before using it
|
257 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
258 |
+
final_output_path = output_path_opencv
|
259 |
+
else:
|
260 |
+
print("OpenCV output is also invalid or empty.")
|
261 |
+
final_output_path = None # Neither worked
|
262 |
+
|
263 |
+
except subprocess.TimeoutExpired:
|
264 |
+
print("FFmpeg command timed out.")
|
265 |
+
print("Falling back to OpenCV output.")
|
266 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
267 |
+
final_output_path = output_path_opencv
|
268 |
+
else:
|
269 |
+
print("OpenCV output is also invalid or empty.")
|
270 |
+
final_output_path = None
|
271 |
+
except FileNotFoundError:
|
272 |
+
print("Error: ffmpeg command not found. Make sure FFmpeg is installed and in your system's PATH.")
|
273 |
+
print("Falling back to OpenCV output.")
|
274 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
275 |
+
final_output_path = output_path_opencv
|
276 |
+
else:
|
277 |
+
print("OpenCV output is also invalid or empty.")
|
278 |
+
final_output_path = None
|
279 |
+
except Exception as e:
|
280 |
+
print(f"An unexpected error occurred during FFmpeg processing: {e}")
|
281 |
+
print("Falling back to OpenCV output.")
|
282 |
+
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
|
283 |
+
final_output_path = output_path_opencv
|
284 |
+
else:
|
285 |
+
print("OpenCV output is also invalid or empty.")
|
286 |
+
final_output_path = None
|
287 |
+
|
288 |
+
# Clean up the large temporary full video file *after* processing
|
289 |
+
if os.path.exists(temp_video_path):
|
290 |
+
try:
|
291 |
+
os.remove(temp_video_path)
|
292 |
+
print(f"Cleaned up temporary full video: {temp_video_path}")
|
293 |
+
except Exception as e:
|
294 |
+
print(f"Warning: Could not remove temporary file {temp_video_path}: {e}")
|
295 |
+
|
296 |
+
# If FFmpeg failed, potentially clean up its failed output
|
297 |
+
if final_output_path != output_path_ffmpeg and os.path.exists(output_path_ffmpeg):
|
298 |
+
try:
|
299 |
+
os.remove(output_path_ffmpeg)
|
300 |
+
except Exception as e:
|
301 |
+
print(f"Warning: Could not remove failed ffmpeg output {output_path_ffmpeg}: {e}")
|
302 |
+
|
303 |
+
|
304 |
+
# Return the path of the successfully created segment
|
305 |
+
print(f"Returning video segment path: {final_output_path}")
|
306 |
+
return final_output_path # Return the path string directly
|
307 |
+
|
308 |
+
except Exception as e:
|
309 |
+
print(f"Error processing video segment for {video_id}: {e}")
|
310 |
+
import traceback
|
311 |
+
traceback.print_exc() # Print detailed traceback for debugging
|
312 |
+
# Clean up potentially partially created files in case of error
|
313 |
+
if 'cap' in locals() and cap.isOpened(): cap.release()
|
314 |
+
if 'out_opencv' in locals() and out_opencv.isOpened(): out_opencv.release()
|
315 |
+
# Attempt cleanup of temp files on error
|
316 |
+
if os.path.exists(temp_video_path): os.remove(temp_video_path)
|
317 |
+
if os.path.exists(output_path_opencv): os.remove(output_path_opencv)
|
318 |
+
if os.path.exists(output_path_ffmpeg): os.remove(output_path_ffmpeg)
|
319 |
+
return None # Return None on error
|
320 |
+
|
321 |
+
QDRANT_COLLECTION_NAME = "video_frames"
|
322 |
+
VIDEO_SEGMENT_DURATION = 30 # Extract 30 seconds around the timestamp
|
323 |
+
|
324 |
+
def parse_llm_output(text):
|
325 |
+
"""
|
326 |
+
Parses the LLM's structured output using a mix of regex for simple
|
327 |
+
fields (video_id, timestamp) and string manipulation for reasoning
|
328 |
+
as a workaround for regex matching issues.
|
329 |
+
"""
|
330 |
+
# Optional: Print repr for debugging if needed
|
331 |
+
# print(f"\nDEBUG: Raw text input to parse_llm_output:\n{repr(text)}\n")
|
332 |
+
data = {}
|
333 |
+
|
334 |
+
# --- Parse video_id and timestamp with regex (as they worked) ---
|
335 |
+
simple_patterns = {
|
336 |
+
'video_id': r"\{Best Result:\s*\[?([^\]\}]+)\]?\s*\}",
|
337 |
+
'timestamp': r"\{Timestamp:\s*\[?([^\]\}]+)\]?\s*\}",
|
338 |
+
}
|
339 |
+
for key, pattern in simple_patterns.items():
|
340 |
+
match = re.search(pattern, text, re.IGNORECASE)
|
341 |
+
if match:
|
342 |
+
value = match.group(1).strip()
|
343 |
+
# Strip potential quotes (single, double, curly)
|
344 |
+
value = value.strip('\'"“”')
|
345 |
+
data[key] = value
|
346 |
+
else:
|
347 |
+
print(f"Warning: Could not parse '{key}' using regex pattern: {pattern}")
|
348 |
+
data[key] = None
|
349 |
+
|
350 |
+
# --- Parse reasoning using string manipulation ---
|
351 |
+
reasoning_value = None
|
352 |
+
try:
|
353 |
+
# Define markers, converting search key to lowercase for case-insensitive find
|
354 |
+
key_marker_lower = "{reasoning:"
|
355 |
+
# Find the start index based on the lowercase marker
|
356 |
+
start_index = text.lower().find(key_marker_lower)
|
357 |
+
|
358 |
+
if start_index != -1:
|
359 |
+
# Find the closing brace '}' starting the search *after* the marker
|
360 |
+
# Add length of the marker to ensure we find the correct closing brace
|
361 |
+
search_start_for_brace = start_index + len(key_marker_lower)
|
362 |
+
end_index = text.find('}', search_start_for_brace)
|
363 |
+
|
364 |
+
if end_index != -1:
|
365 |
+
# Extract content using original casing from text, between actual marker end and brace
|
366 |
+
# Calculate the actual end of the marker in the original string
|
367 |
+
actual_marker_end = start_index + len(key_marker_lower)
|
368 |
+
value = text[actual_marker_end : end_index]
|
369 |
+
|
370 |
+
# Perform cleanup on the extracted value
|
371 |
+
value = value.strip() # Strip outer whitespace first
|
372 |
+
if value.startswith('[') and value.endswith(']'):
|
373 |
+
value = value[1:-1] # Slice off brackets
|
374 |
+
value = value.strip('\'"“”') # Strip quotes
|
375 |
+
value = value.strip() # Strip whitespace again
|
376 |
+
reasoning_value = value
|
377 |
+
else:
|
378 |
+
print("Warning: Found '{reasoning:' marker but no closing '}' found afterwards.")
|
379 |
+
else:
|
380 |
+
print("Warning: Marker '{reasoning:' not found in text.")
|
381 |
+
|
382 |
+
except Exception as e:
|
383 |
+
# Catch potential errors during slicing or finding
|
384 |
+
print(f"Error during string manipulation parsing for reasoning: {e}")
|
385 |
+
|
386 |
+
data['reasoning'] = reasoning_value # Assign found value or None
|
387 |
+
|
388 |
+
# --- Validation ---
|
389 |
+
if data.get('timestamp'):
|
390 |
+
try:
|
391 |
+
float(data['timestamp'])
|
392 |
+
except ValueError:
|
393 |
+
print(f"Warning: Parsed timestamp '{data['timestamp']}' is not a valid number.")
|
394 |
+
|
395 |
+
print(f"Parsed LLM output (Using String Manipulation for Reasoning): {data}")
|
396 |
+
return data
|
397 |
+
|
398 |
+
|
399 |
+
def process_query_and_get_video(query_text):
|
400 |
+
"""
|
401 |
+
Orchestrates RAG, LLM query, parsing, and video extraction.
|
402 |
+
"""
|
403 |
+
print(f"\n--- Processing query: '{query_text}' ---")
|
404 |
+
|
405 |
+
# 1. RAG Query
|
406 |
+
print("Step 1: Performing RAG query...")
|
407 |
+
rag_results = rag_query(qdrant_client, QDRANT_COLLECTION_NAME, query_text)
|
408 |
+
|
409 |
+
if "error" in rag_results or not rag_results.get("results"):
|
410 |
+
error_msg = rag_results.get('error', 'No relevant segments found by RAG.')
|
411 |
+
print(f"RAG Error/No Results: {error_msg}")
|
412 |
+
return f"Error during RAG search: {error_msg}", None # Return error message and no video
|
413 |
+
|
414 |
+
print(f"RAG query successful. Found {len(rag_results['results'])} results.")
|
415 |
+
# print(f"Top RAG result: {rag_results['results'][0]}") # For debugging
|
416 |
+
|
417 |
+
# 2. Format LLM Prompt
|
418 |
+
print("Step 2: Formatting prompt for LLM...")
|
419 |
+
# Use the exact prompt structure from your example
|
420 |
+
prompt = f"""You are tasked with selecting the most relevant information from a set of video subtitle segments to answer a query.
|
421 |
+
|
422 |
+
QUERY (also seen below): "{query_text}"
|
423 |
+
|
424 |
+
For each result provided, evaluate how well it directly addresses the definition or explanation related to the query. Pay attention to:
|
425 |
+
1. Clarity of explanation
|
426 |
+
2. Relevance to the query
|
427 |
+
3. Completeness of information
|
428 |
+
|
429 |
+
From the provided results, select the SINGLE BEST match that most directly answers the query.
|
430 |
+
|
431 |
+
Format your response STRICTLY as follows, with each field on a new line:
|
432 |
+
{{Best Result: [video_id]}}
|
433 |
+
{{Timestamp: [timestamp]}}
|
434 |
+
{{Content: [subtitle text]}}
|
435 |
+
{{Reasoning: [Brief explanation of why this result best answers the query]}}
|
436 |
+
|
437 |
+
{rag_results}""" # Pass the whole RAG results dictionary as string representation
|
438 |
+
|
439 |
+
# 3. Call LLM
|
440 |
+
print("Step 3: Querying the LLM...")
|
441 |
+
try:
|
442 |
+
output = llm.create_chat_completion(
|
443 |
+
messages=[
|
444 |
+
{"role": "system", "content": "You are a helpful assistant designed to select the best video segment based on relevance to a query, following a specific output format."},
|
445 |
+
{"role": "user", "content": prompt},
|
446 |
+
],
|
447 |
+
temperature=0.1, # Lower temperature for more deterministic selection
|
448 |
+
max_tokens=250 # Adjust as needed, ensure enough space for reasoning
|
449 |
+
)
|
450 |
+
llm_response_text = output['choices'][0]['message']['content']
|
451 |
+
print(f"LLM Response:\n{llm_response_text}")
|
452 |
+
except Exception as e:
|
453 |
+
print(f"Error during LLM call: {e}")
|
454 |
+
return f"Error calling LLM: {e}", None
|
455 |
+
|
456 |
+
# 4. Parse LLM Response
|
457 |
+
print("Step 4: Parsing LLM response...")
|
458 |
+
parsed_data = parse_llm_output(llm_response_text)
|
459 |
+
|
460 |
+
video_id = parsed_data.get('video_id')
|
461 |
+
timestamp_str = parsed_data.get('timestamp')
|
462 |
+
reasoning = parsed_data.get('reasoning')
|
463 |
+
|
464 |
+
if not video_id or not timestamp_str:
|
465 |
+
print("Error: Could not parse required video_id or timestamp from LLM response.")
|
466 |
+
fallback_reasoning = reasoning if reasoning else "Could not determine the best segment."
|
467 |
+
# Include raw LLM response in the error message for debugging
|
468 |
+
error_msg = f"Failed to parse LLM response. LLM said:\n---\n{llm_response_text}\n---\nReasoning (if found): {fallback_reasoning}"
|
469 |
+
return error_msg, None
|
470 |
+
|
471 |
+
try:
|
472 |
+
timestamp = float(timestamp_str)
|
473 |
+
# Adjust timestamp slightly - start a bit earlier if possible
|
474 |
+
start_time = max(0.0, timestamp - (VIDEO_SEGMENT_DURATION / 4))
|
475 |
+
except ValueError:
|
476 |
+
print(f"Error: Could not convert parsed timestamp '{timestamp_str}' to float.")
|
477 |
+
error_msg = f"Invalid timestamp format from LLM ('{timestamp_str}'). LLM reasoning (if found): {reasoning}"
|
478 |
+
return error_msg, None
|
479 |
+
|
480 |
+
final_reasoning = reasoning if reasoning else "No reasoning provided by LLM."
|
481 |
+
|
482 |
+
# 5. Extract Video Segment
|
483 |
+
print(f"Step 5: Extracting video segment (ID: {video_id}, Start: {start_time:.2f}s, Duration: {VIDEO_SEGMENT_DURATION}s)...")
|
484 |
+
# Reset the dataset iterator for each new request IF POSSIBLE.
|
485 |
+
# NOTE: Resetting a Hugging Face streaming dataset is tricky.
|
486 |
+
# It might re-start from the beginning. For heavy use, downloading might be better.
|
487 |
+
# Or, implement caching of downloaded videos if the same ones are accessed often.
|
488 |
+
# For this example, we'll rely on the stream potentially starting over or finding the item.
|
489 |
+
global dataset # Make sure we use the global dataset object
|
490 |
+
# dataset = iter(load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)) # Attempt re-init (might be slow)
|
491 |
+
|
492 |
+
video_path = extract_video_segment(video_id, start_time, VIDEO_SEGMENT_DURATION, dataset)
|
493 |
+
|
494 |
+
if video_path and os.path.exists(video_path):
|
495 |
+
print(f"Video segment extracted successfully: {video_path}")
|
496 |
+
return final_reasoning, video_path
|
497 |
+
else:
|
498 |
+
print("Failed to extract video segment.")
|
499 |
+
error_msg = f"{final_reasoning}\n\n(However, failed to extract the corresponding video segment for ID {video_id} at timestamp {timestamp_str}.)"
|
500 |
+
return error_msg, None
|
501 |
+
|
502 |
+
with gr.Blocks() as iface:
|
503 |
+
gr.Markdown(
|
504 |
+
"""
|
505 |
+
# AI Lecture Video Q&A
|
506 |
+
Ask a question about the AI lectures. The system will find relevant segments using RAG,
|
507 |
+
ask a fine-tuned LLM to select the best one, and display the corresponding video clip.
|
508 |
+
"""
|
509 |
+
)
|
510 |
+
with gr.Row():
|
511 |
+
query_input = gr.Textbox(label="Your Question", placeholder="e.g., What is a convolutional neural network?")
|
512 |
+
submit_button = gr.Button("Ask & Find Video")
|
513 |
+
with gr.Row():
|
514 |
+
reasoning_output = gr.Markdown(label="LLM Reasoning")
|
515 |
+
with gr.Row():
|
516 |
+
video_output = gr.Video(label="Relevant Video Segment")
|
517 |
+
|
518 |
+
submit_button.click(
|
519 |
+
fn=process_query_and_get_video,
|
520 |
+
inputs=query_input,
|
521 |
+
outputs=[reasoning_output, video_output]
|
522 |
+
)
|
523 |
+
|
524 |
+
gr.Examples(
|
525 |
+
examples=[
|
526 |
+
"What are activation functions?",
|
527 |
+
"Explain backpropagation.",
|
528 |
+
"What is transfer learning?",
|
529 |
+
"Show me an example of data augmentation.",
|
530 |
+
"What is the difference between classification and regression?",
|
531 |
+
],
|
532 |
+
inputs=query_input,
|
533 |
+
outputs=[reasoning_output, video_output], # Outputs needed for examples too
|
534 |
+
fn=process_query_and_get_video, # The function to run for examples
|
535 |
+
cache_examples=False, # Disable caching if streaming/LLM state changes
|
536 |
+
)
|
537 |
+
|
538 |
+
# --- Launch the Interface ---
|
539 |
+
# share=True creates a public link, requires internet. Set to False for local use.
|
540 |
+
# debug=True provides more detailed error outputs in the console.
|
541 |
+
print("Launching Gradio interface...")
|
542 |
+
iface.launch(debug=True, share=False) # Run locally in the notebook
|