ai_class_app / app.py
mitch
Update app.py
b8b85a0 unverified
import gradio as gr
from llama_cpp import Llama
from qdrant_client import QdrantClient
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import cv2
import os
import tempfile
import uuid
import re
import subprocess
import time
# Configuration
QDRANT_COLLECTION_NAME = "video_frames"
VIDEO_SEGMENT_DURATION = 60
# Load Qdrant key
QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY")
if not QDRANT_API_KEY:
print("Error: QDRANT_API_KEY environment variable not found.")
print("Please add your Qdrant API key as a secret named 'QDRANT_API_KEY' in your Hugging Face Space settings.")
raise ValueError("QDRANT_API_KEY environment variable not set.")
print("Initializing LLM...")
try:
llm = Llama.from_pretrained(
repo_id="m1tch/gemma-finetune-ai_class_gguf",
filename="gemma-3_ai_class.Q8_0.gguf",
n_gpu_layers=-1,
n_ctx=2048,
verbose=False
)
print("LLM initialized successfully.")
except Exception as e:
print(f"Error initializing LLM: {e}")
raise
print("Connecting to Qdrant...")
try:
qdrant_client = QdrantClient(
url="https://2c18d413-cbb5-441c-b060-4c8c2302dcde.us-east4-0.gcp.cloud.qdrant.io:6333/",
api_key=QDRANT_API_KEY,
timeout=60
)
qdrant_client.get_collections()
print("Qdrant connection successful.")
except Exception as e:
print(f"Error connecting to Qdrant: {e}")
raise
print("Loading dataset stream...")
try:
# Load video dataset
dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)
print(f"Dataset loaded. First item example: {next(iter(dataset))['__key__']}")
except Exception as e:
print(f"Error loading dataset: {e}")
raise
try:
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
print("Sentence Transformer model loaded.")
except Exception as e:
print(f"Error loading Sentence Transformer model: {e}")
raise
def rag_query(client, collection_name, query_text, top_k=5, filter_condition=None):
"""
Test RAG by querying the vector database with text. Returns a dictionary with search results and metadata.
Uses the pre-loaded embedding_model.
"""
try:
query_vector = embedding_model.encode(query_text).tolist()
search_params = {
"collection_name": collection_name,
"query_vector": query_vector,
"limit": top_k,
"with_payload": True,
"with_vectors": False
}
if filter_condition:
search_params["filter"] = filter_condition
search_results = client.search(**search_params)
formatted_results = []
for idx, result in enumerate(search_results):
formatted_results.append({
"rank": idx + 1,
"score": result.score,
"video_id": result.payload.get("video_id"),
"timestamp": result.payload.get("timestamp"),
"subtitle": result.payload.get("subtitle"),
"frame_number": result.payload.get("frame_number")
})
return {
"query": query_text,
"results": formatted_results,
"avg_score": sum(r.score for r in search_results) / len(search_results) if search_results else 0
}
except Exception as e:
print(f"Error during RAG query: {e}")
return {"error": str(e), "query": query_text, "results": []}
def extract_video_segment(video_id, start_time, duration, dataset):
"""
Generator function that extracts and yields a single video segment file path.
Modified to return a single path suitable for Gradio.
"""
target_id = str(video_id)
target_key = f"videos/{target_id}/{target_id}"
start_time = float(start_time)
duration = float(duration)
unique_id = str(uuid.uuid4())
temp_dir = os.path.join(tempfile.gettempdir(), f"gradio_video_{unique_id}")
os.makedirs(temp_dir, exist_ok=True)
temp_video_path = os.path.join(temp_dir, f"{target_id}_full_{unique_id}.mp4")
output_path_opencv = os.path.join(temp_dir, f"output_opencv_{unique_id}.mp4")
output_path_ffmpeg = os.path.join(temp_dir, f"output_ffmpeg_{unique_id}.mp4")
print(f"Attempting to extract segment for video_id={target_id}, start={start_time}, duration={duration}")
print(f"Looking for dataset key: {target_key}")
print(f"Temporary directory: {temp_dir}")
try:
found = False
retries = 3
dataset_iterator = iter(dataset)
for _ in range(retries * 100):
try:
sample = next(dataset_iterator)
if '__key__' in sample and sample['__key__'] == target_key:
found = True
print(f"Found video key {target_key}. Saving to {temp_video_path}...")
with open(temp_video_path, 'wb') as f:
f.write(sample['mp4'])
print(f"Video saved successfully ({os.path.getsize(temp_video_path)} bytes).")
break
except StopIteration:
print("Reached end of dataset stream without finding the video.")
break
except Exception as e:
print(f"Error iterating dataset: {e}")
time.sleep(1)
if not found:
print(f"Could not find video with ID {target_id} (key: {target_key}) in the dataset stream after {_ + 1} attempts.")
return None
# Process the saved video
if not os.path.exists(temp_video_path) or os.path.getsize(temp_video_path) == 0:
print(f"Temporary video file {temp_video_path} is missing or empty.")
return None
cap = cv2.VideoCapture(temp_video_path)
if not cap.isOpened():
print(f"Error opening video file with OpenCV: {temp_video_path}")
return None
fps = cap.get(cv2.CAP_PROP_FPS)
if fps <= 0:
print(f"Warning: Invalid FPS ({fps}) detected for {temp_video_path}. Assuming 30 FPS.")
fps = 30
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_vid_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
vid_duration = total_vid_frames / fps if fps > 0 else 0
print(f"Video properties: {width}x{height} @ {fps:.2f}fps, Total Duration: {vid_duration:.2f}s")
start_frame = int(start_time * fps)
end_frame = int((start_time + duration) * fps)
# Clamp frame numbers to valid range
start_frame = max(0, start_frame)
end_frame = min(total_vid_frames, end_frame)
if start_frame >= total_vid_frames or start_frame >= end_frame:
print(f"Calculated start frame ({start_frame}) is beyond video length ({total_vid_frames}) or segment is invalid.")
cap.release()
return None
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frames_to_write = end_frame - start_frame
print(f"Extracting frames from {start_frame} to {end_frame} ({frames_to_write} frames)")
# Try OpenCV first
fourcc_opencv = cv2.VideoWriter_fourcc(*'mp4v') # mp4v is often more compatible than avc1 with base OpenCV
out_opencv = cv2.VideoWriter(output_path_opencv, fourcc_opencv, fps, (width, height))
if not out_opencv.isOpened():
print("Error opening OpenCV VideoWriter with mp4v.")
cap.release()
return None
frames_written_opencv = 0
while frames_written_opencv < frames_to_write:
ret, frame = cap.read()
if not ret:
print("Warning: Ran out of frames before reaching target end frame.")
break
out_opencv.write(frame)
frames_written_opencv += 1
out_opencv.release()
print(f"OpenCV finished writing {frames_written_opencv} frames to {output_path_opencv}")
cap.release()
# FFmpeg
final_output_path = None
try:
cmd = [
'ffmpeg',
'-ss', str(start_time), # Start time
'-i', temp_video_path, # Input file (original downloaded)
'-t', str(duration), # Duration of the segment
'-c:v', 'libx264',
'-profile:v', 'baseline',
'-level', '3.0',
'-preset', 'fast',
'-pix_fmt', 'yuv420p',
'-movflags', '+faststart',
'-c:a', 'aac',
'-b:a', '128k',
'-y',
output_path_ffmpeg
]
print(f"Running FFmpeg command: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120) # Add timeout
if result.returncode == 0 and os.path.exists(output_path_ffmpeg) and os.path.getsize(output_path_ffmpeg) > 0:
print(f"FFmpeg processing successful. Output: {output_path_ffmpeg}")
final_output_path = output_path_ffmpeg
else:
print(f"FFmpeg error (Return Code: {result.returncode}):")
print(f"FFmpeg stdout:\n{result.stdout}")
print(f"FFmpeg stderr:\n{result.stderr}")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
except subprocess.TimeoutExpired:
print("FFmpeg command timed out.")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
except FileNotFoundError:
print("Error: ffmpeg command not found. Make sure FFmpeg is installed and in your system's PATH.")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
except Exception as e:
print(f"An unexpected error occurred during FFmpeg processing: {e}")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
if os.path.exists(temp_video_path):
try:
os.remove(temp_video_path)
print(f"Cleaned up temporary full video: {temp_video_path}")
except Exception as e:
print(f"Warning: Could not remove temporary file {temp_video_path}: {e}")
# If FFmpeg failed
if final_output_path != output_path_ffmpeg and os.path.exists(output_path_ffmpeg):
try:
os.remove(output_path_ffmpeg)
except Exception as e:
print(f"Warning: Could not remove failed ffmpeg output {output_path_ffmpeg}: {e}")
print(f"Returning video segment path: {final_output_path}")
return final_output_path
except Exception as e:
print(f"Error processing video segment for {video_id}: {e}")
import traceback
traceback.print_exc()
if 'cap' in locals() and cap.isOpened(): cap.release()
if 'out_opencv' in locals() and out_opencv.isOpened(): out_opencv.release()
if os.path.exists(temp_video_path): os.remove(temp_video_path)
if os.path.exists(output_path_opencv): os.remove(output_path_opencv)
if os.path.exists(output_path_ffmpeg): os.remove(output_path_ffmpeg)
return None
QDRANT_COLLECTION_NAME = "video_frames"
VIDEO_SEGMENT_DURATION = 40 # Extract 40 seconds around the timestamp
def parse_llm_output(text):
"""
Parses the LLM's structured output using a mix of regex for simple
fields (video_id, timestamp) and string manipulation for reasoning
as a workaround for regex matching issues.
"""
data = {}
# Parse video_id and timestamp with regex
simple_patterns = {
'video_id': r"\{Best Result:\s*\[?([^\]\}]+)\]?\s*\}",
'timestamp': r"\{Timestamp:\s*\[?([^\]\}]+)\]?\s*\}",
}
for key, pattern in simple_patterns.items():
match = re.search(pattern, text, re.IGNORECASE)
if match:
value = match.group(1).strip()
value = value.strip('\'"β€œβ€')
data[key] = value
else:
print(f"Warning: Could not parse '{key}' using regex pattern: {pattern}")
data[key] = None
# Parse reasoning
reasoning_value = None
try:
key_marker_lower = "{reasoning:"
start_index = text.lower().find(key_marker_lower)
if start_index != -1:
search_start_for_brace = start_index + len(key_marker_lower)
end_index = text.find('}', search_start_for_brace)
if end_index != -1:
actual_marker_end = start_index + len(key_marker_lower)
value = text[actual_marker_end : end_index]
value = value.strip()
if value.startswith('[') and value.endswith(']'):
value = value[1:-1]
value = value.strip('\'"β€œβ€')
value = value.strip()
reasoning_value = value
else:
print("Warning: Found '{reasoning:' marker but no closing '}' found afterwards.")
else:
print("Warning: Marker '{reasoning:' not found in text.")
except Exception as e:
print(f"Error during string manipulation parsing for reasoning: {e}")
data['reasoning'] = reasoning_value
if data.get('timestamp'):
try:
float(data['timestamp'])
except ValueError:
print(f"Warning: Parsed timestamp '{data['timestamp']}' is not a valid number.")
print(f"Parsed LLM output (Using String Manipulation for Reasoning): {data}")
return data
def process_query_and_get_video(query_text):
"""
Orchestrates RAG, LLM query, parsing, and video extraction.
"""
print(f"\n--- Processing query: '{query_text}' ---")
# 1. RAG Query
print("Step 1: Performing RAG query...")
rag_results = rag_query(qdrant_client, QDRANT_COLLECTION_NAME, query_text)
if "error" in rag_results or not rag_results.get("results"):
error_msg = rag_results.get('error', 'No relevant segments found by RAG.')
print(f"RAG Error/No Results: {error_msg}")
return f"Error during RAG search: {error_msg}", None
print(f"RAG query successful. Found {len(rag_results['results'])} results.")
# Format LLM Prompt
print("Step 2: Formatting prompt for LLM...")
prompt = f"""You are tasked with selecting the most relevant information from a set of video subtitle segments to answer a query.
QUERY (also seen below): "{query_text}"
For each result provided, evaluate how well it directly addresses the definition or explanation related to the query. Pay attention to:
1. Clarity of explanation
2. Relevance to the query
3. Completeness of information
From the provided results, select the SINGLE BEST match that most directly answers the query.
Format your response STRICTLY as follows, with each field on a new line:
{{Best Result: [video_id]}}
{{Timestamp: [timestamp]}}
{{Content: [subtitle text]}}
{{Reasoning: [Brief explanation of why this result best answers the query]}}
{rag_results}"""
# 3. Call LLM
print("Step 3: Querying the LLM...")
try:
output = llm.create_chat_completion(
messages=[
{"role": "system", "content": "You are a helpful assistant designed to select the best video segment based on relevance to a query, following a specific output format."},
{"role": "user", "content": prompt},
],
temperature=0.1,
max_tokens=300
)
llm_response_text = output['choices'][0]['message']['content']
print(f"LLM Response:\n{llm_response_text}")
except Exception as e:
print(f"Error during LLM call: {e}")
return f"Error calling LLM: {e}", None
# 4. Parse LLM Response
print("Step 4: Parsing LLM response...")
parsed_data = parse_llm_output(llm_response_text)
video_id = parsed_data.get('video_id')
timestamp_str = parsed_data.get('timestamp')
reasoning = parsed_data.get('reasoning')
if not video_id or not timestamp_str:
print("Error: Could not parse required video_id or timestamp from LLM response.")
fallback_reasoning = reasoning if reasoning else "Could not determine the best segment."
error_msg = f"Failed to parse LLM response. LLM said:\n---\n{llm_response_text}\n---\nReasoning (if found): {fallback_reasoning}"
return error_msg, None
try:
timestamp = float(timestamp_str)
# Adjust timestamp slightly - start a bit earlier if possible
start_time = max(0.0, timestamp - (VIDEO_SEGMENT_DURATION / 4))
except ValueError:
print(f"Error: Could not convert parsed timestamp '{timestamp_str}' to float.")
error_msg = f"Invalid timestamp format from LLM ('{timestamp_str}'). LLM reasoning (if found): {reasoning}"
return error_msg, None
final_reasoning = reasoning if reasoning else "No reasoning provided by LLM."
# Extract Video Segment
print(f"Step 5: Extracting video segment (ID: {video_id}, Start: {start_time:.2f}s, Duration: {VIDEO_SEGMENT_DURATION}s)...")
global dataset
video_path = extract_video_segment(video_id, start_time, VIDEO_SEGMENT_DURATION, dataset)
if video_path and os.path.exists(video_path):
print(f"Video segment extracted successfully: {video_path}")
return final_reasoning, video_path
else:
print("Failed to extract video segment.")
error_msg = f"{final_reasoning}\n\n(However, failed to extract the corresponding video segment for ID {video_id} at timestamp {timestamp_str}.)"
return error_msg, None
with gr.Blocks() as iface:
gr.Markdown(
"""
# Lecture Videos Q&A
Ask a question about the lectures. The system will find relevant segments using RAG
and a fine-tuned LLM to select the best one, and display the corresponding video clip.
"""
)
with gr.Row():
query_input = gr.Textbox(label="Your Question", placeholder="Using only the videos, explain how ResNets work.")
submit_button = gr.Button("Ask & Find Video")
with gr.Row():
reasoning_output = gr.Markdown(label="LLM Reasoning")
with gr.Row():
video_output = gr.Video(label="Relevant Video Segment")
submit_button.click(
fn=process_query_and_get_video,
inputs=query_input,
outputs=[reasoning_output, video_output]
)
gr.Examples(
examples=[
"Using only the videos, explain how ResNets work.",
"Using only the videos, explain the advantages of CNNs over fully connected networks.",
"Using only the videos, explain the the binary cross entropy loss function.",
],
inputs=query_input,
outputs=[reasoning_output, video_output],
fn=process_query_and_get_video,
cache_examples=False,
)
print("Launching Gradio interface...")
iface.launch(debug=True, share=False)