|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
qa_pipeline = pipeline( |
|
"question-answering", |
|
model="mrm8488/bert-base-spanish-wwm-cased-finetuned-spa-squad2-es", |
|
tokenizer="mrm8488/bert-base-spanish-wwm-cased-finetuned-spa-squad2-es" |
|
) |
|
|
|
|
|
def responder(pregunta, contexto): |
|
resultado = qa_pipeline(question=pregunta, context=contexto) |
|
return resultado['answer'] |
|
|
|
|
|
interface = gr.Interface( |
|
fn=responder, |
|
inputs=[ |
|
gr.Textbox(lines=2, label="Pregunta"), |
|
gr.Textbox(lines=10, label="Contexto") |
|
], |
|
outputs="text", |
|
title="Preguntas y Respuestas en Español", |
|
description="Modelo BETO afinado con SQuAD2.0 en español" |
|
) |
|
|
|
interface.launch() |
|
|