Spaces:
Running
Running
File size: 1,540 Bytes
96d51b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import os
import torch
import typer
from bytelatent.distributed import DistributedArgs, setup_torch_distributed
from bytelatent.generate import load_consolidated_model_and_tokenizer
from bytelatent.generate_blt import generate_nocache
from bytelatent.model.blt import ByteLatentTransformer
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
def main(prompt: str, model_name: str = "blt-1b"):
distributed_args = DistributedArgs()
distributed_args.configure_world()
if not torch.distributed.is_initialized():
setup_torch_distributed(distributed_args)
checkpoint_path = os.path.join("hf-weights", model_name)
print(f"Loading BLT model: {model_name}")
model, tokenizer, train_cfg = load_consolidated_model_and_tokenizer(
checkpoint_path,
)
assert isinstance(model, ByteLatentTransformer)
assert isinstance(tokenizer, BltTokenizer)
patcher_args = train_cfg.data.patcher_args.model_copy(deep=True)
patcher_args.realtime_patching = True
print("Loading entropy model and patcher")
patcher_args.entropy_model_checkpoint_dir = os.path.join(
checkpoint_path, "entropy_model"
)
patcher = patcher_args.build()
prompts = [prompt]
outputs = generate_nocache(
prompts, model=model, tokenizer=tokenizer, patcher=patcher
)
text_outputs = [tokenizer.decode(t) for t in outputs]
for p, t in zip(prompts, text_outputs):
print(f'Prompt: "{p}" Completion: "{t}"')
print()
if __name__ == "__main__":
typer.run(main)
|