File size: 11,504 Bytes
cc0dd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from typing import Dict, List, Optional, Sequence, Tuple, Union

import mmcv
import numpy as np
import torch
from mmengine.config import Config, ConfigDict
from mmengine.infer.infer import ModelType
from mmengine.model import revert_sync_batchnorm
from mmengine.registry import init_default_scope
from mmengine.structures import InstanceData
from rich.progress import track

from mmpose.evaluation.functional import nms
from mmpose.registry import DATASETS, INFERENCERS
from mmpose.structures import merge_data_samples
from .base_mmpose_inferencer import BaseMMPoseInferencer
from .utils import default_det_models

try:
    from mmdet.apis.det_inferencer import DetInferencer
    has_mmdet = True
except (ImportError, ModuleNotFoundError):
    has_mmdet = False

InstanceList = List[InstanceData]
InputType = Union[str, np.ndarray]
InputsType = Union[InputType, Sequence[InputType]]
PredType = Union[InstanceData, InstanceList]
ImgType = Union[np.ndarray, Sequence[np.ndarray]]
ConfigType = Union[Config, ConfigDict]
ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]]


@INFERENCERS.register_module(name='pose-estimation')
@INFERENCERS.register_module()
class Pose2DInferencer(BaseMMPoseInferencer):
    """The inferencer for 2D pose estimation.

    Args:
        model (str, optional): Pretrained 2D pose estimation algorithm.
            It's the path to the config file or the model name defined in
            metafile. For example, it could be:

            - model alias, e.g. ``'body'``,
            - config name, e.g. ``'simcc_res50_8xb64-210e_coco-256x192'``,
            - config path

            Defaults to ``None``.
        weights (str, optional): Path to the checkpoint. If it is not
            specified and "model" is a model name of metafile, the weights
            will be loaded from metafile. Defaults to None.
        device (str, optional): Device to run inference. If None, the
            available device will be automatically used. Defaults to None.
        scope (str, optional): The scope of the model. Defaults to "mmpose".
        det_model (str, optional): Config path or alias of detection model.
            Defaults to None.
        det_weights (str, optional): Path to the checkpoints of detection
            model. Defaults to None.
        det_cat_ids (int or list[int], optional): Category id for
            detection model. Defaults to None.
        output_heatmaps (bool, optional): Flag to visualize predicted
            heatmaps. If set to None, the default setting from the model
            config will be used. Default is None.
    """

    preprocess_kwargs: set = {'bbox_thr', 'nms_thr', 'bboxes'}
    forward_kwargs: set = set()
    visualize_kwargs: set = {
        'return_vis',
        'show',
        'wait_time',
        'draw_bbox',
        'radius',
        'thickness',
        'kpt_thr',
        'vis_out_dir',
    }
    postprocess_kwargs: set = {'pred_out_dir'}

    def __init__(self,
                 model: Union[ModelType, str],
                 weights: Optional[str] = None,
                 device: Optional[str] = None,
                 scope: Optional[str] = 'mmpose',
                 det_model: Optional[Union[ModelType, str]] = None,
                 det_weights: Optional[str] = None,
                 det_cat_ids: Optional[Union[int, Tuple]] = None,
                 output_heatmaps: Optional[bool] = None) -> None:

        init_default_scope(scope)
        super().__init__(
            model=model, weights=weights, device=device, scope=scope)
        self.model = revert_sync_batchnorm(self.model)
        if output_heatmaps is not None:
            self.model.test_cfg['output_heatmaps'] = output_heatmaps

        # assign dataset metainfo to self.visualizer
        self.visualizer.set_dataset_meta(self.model.dataset_meta)

        # initialize detector for top-down models
        if self.cfg.data_mode == 'topdown':
            object_type = DATASETS.get(self.cfg.dataset_type).__module__.split(
                'datasets.')[-1].split('.')[0].lower()

            if det_model in ('whole_image', 'whole-image') or \
                (det_model is None and
                 object_type not in default_det_models):
                self.detector = None

            else:
                det_scope = 'mmdet'
                if det_model is None:
                    det_info = default_det_models[object_type]
                    det_model, det_weights, det_cat_ids = det_info[
                        'model'], det_info['weights'], det_info['cat_ids']
                elif os.path.exists(det_model):
                    det_cfg = Config.fromfile(det_model)
                    det_scope = det_cfg.default_scope

                if has_mmdet:
                    self.detector = DetInferencer(
                        det_model, det_weights, device=device, scope=det_scope)
                else:
                    raise RuntimeError(
                        'MMDetection (v3.0.0 or above) is required to build '
                        'inferencers for top-down pose estimation models.')

                if isinstance(det_cat_ids, (tuple, list)):
                    self.det_cat_ids = det_cat_ids
                else:
                    self.det_cat_ids = (det_cat_ids, )

        self._video_input = False

    def preprocess_single(self,
                          input: InputType,
                          index: int,
                          bbox_thr: float = 0.3,
                          nms_thr: float = 0.3,
                          bboxes: Union[List[List], List[np.ndarray],
                                        np.ndarray] = []):
        """Process a single input into a model-feedable format.

        Args:
            input (InputType): Input given by user.
            index (int): index of the input
            bbox_thr (float): threshold for bounding box detection.
                Defaults to 0.3.
            nms_thr (float): IoU threshold for bounding box NMS.
                Defaults to 0.3.

        Yields:
            Any: Data processed by the ``pipeline`` and ``collate_fn``.
        """

        if isinstance(input, str):
            data_info = dict(img_path=input)
        else:
            data_info = dict(img=input, img_path=f'{index}.jpg'.rjust(10, '0'))
        data_info.update(self.model.dataset_meta)

        if self.cfg.data_mode == 'topdown':
            if self.detector is not None:
                det_results = self.detector(
                    input, return_datasample=True)['predictions']
                pred_instance = det_results[0].pred_instances.cpu().numpy()
                bboxes = np.concatenate(
                    (pred_instance.bboxes, pred_instance.scores[:, None]),
                    axis=1)

                label_mask = np.zeros(len(bboxes), dtype=np.uint8)
                for cat_id in self.det_cat_ids:
                    label_mask = np.logical_or(label_mask,
                                               pred_instance.labels == cat_id)

                bboxes = bboxes[np.logical_and(
                    label_mask, pred_instance.scores > bbox_thr)]
                bboxes = bboxes[nms(bboxes, nms_thr)]

            data_infos = []
            if len(bboxes) > 0:
                for bbox in bboxes:
                    inst = data_info.copy()
                    inst['bbox'] = bbox[None, :4]
                    inst['bbox_score'] = bbox[4:5]
                    data_infos.append(self.pipeline(inst))
            else:
                inst = data_info.copy()

                # get bbox from the image size
                if isinstance(input, str):
                    input = mmcv.imread(input)
                h, w = input.shape[:2]

                inst['bbox'] = np.array([[0, 0, w, h]], dtype=np.float32)
                inst['bbox_score'] = np.ones(1, dtype=np.float32)
                data_infos.append(self.pipeline(inst))

        else:  # bottom-up
            data_infos = [self.pipeline(data_info)]

        return data_infos

    @torch.no_grad()
    def forward(self, inputs: Union[dict, tuple], bbox_thr=-1):
        data_samples = super().forward(inputs)
        if self.cfg.data_mode == 'topdown':
            data_samples = [merge_data_samples(data_samples)]
        if bbox_thr > 0:
            for ds in data_samples:
                if 'bbox_scores' in ds.pred_instances:
                    ds.pred_instances = ds.pred_instances[
                        ds.pred_instances.bbox_scores > bbox_thr]
        return data_samples

    def __call__(
        self,
        inputs: InputsType,
        return_datasample: bool = False,
        batch_size: int = 1,
        out_dir: Optional[str] = None,
        **kwargs,
    ) -> dict:
        """Call the inferencer.

        Args:
            inputs (InputsType): Inputs for the inferencer.
            return_datasample (bool): Whether to return results as
                :obj:`BaseDataElement`. Defaults to False.
            batch_size (int): Batch size. Defaults to 1.
            out_dir (str, optional): directory to save visualization
                results and predictions. Will be overoden if vis_out_dir or
                pred_out_dir are given. Defaults to None
            **kwargs: Key words arguments passed to :meth:`preprocess`,
                :meth:`forward`, :meth:`visualize` and :meth:`postprocess`.
                Each key in kwargs should be in the corresponding set of
                ``preprocess_kwargs``, ``forward_kwargs``,
                ``visualize_kwargs`` and ``postprocess_kwargs``.

        Returns:
            dict: Inference and visualization results.
        """
        if out_dir is not None:
            if 'vis_out_dir' not in kwargs:
                kwargs['vis_out_dir'] = f'{out_dir}/visualizations'
            if 'pred_out_dir' not in kwargs:
                kwargs['pred_out_dir'] = f'{out_dir}/predictions'

        (
            preprocess_kwargs,
            forward_kwargs,
            visualize_kwargs,
            postprocess_kwargs,
        ) = self._dispatch_kwargs(**kwargs)

        # preprocessing
        if isinstance(inputs, str) and inputs.startswith('webcam'):
            inputs = self._get_webcam_inputs(inputs)
            batch_size = 1
            if not visualize_kwargs.get('show', False):
                warnings.warn('The display mode is closed when using webcam '
                              'input. It will be turned on automatically.')
            visualize_kwargs['show'] = True
        else:
            inputs = self._inputs_to_list(inputs)

        forward_kwargs['bbox_thr'] = preprocess_kwargs.get('bbox_thr', -1)
        inputs = self.preprocess(
            inputs, batch_size=batch_size, **preprocess_kwargs)

        preds = []
        if not hasattr(self, 'detector'):
            inputs = track(inputs, description='Inference')

        for proc_inputs, ori_inputs in inputs:
            preds = self.forward(proc_inputs, **forward_kwargs)

            visualization = self.visualize(ori_inputs, preds,
                                           **visualize_kwargs)
            results = self.postprocess(preds, visualization, return_datasample,
                                       **postprocess_kwargs)
            yield results

        if self._video_input:
            self._finalize_video_processing(
                postprocess_kwargs.get('pred_out_dir', ''))