Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
cdbfba8
1
Parent(s):
0f1d758
修复Stateless GPU环境中CUDA初始化问题
Browse files- app.py +73 -24
- diffusers_helper/memory.py +53 -14
app.py
CHANGED
@@ -30,30 +30,46 @@ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode
|
|
30 |
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
31 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
32 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
33 |
-
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
34 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
35 |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
36 |
from transformers import SiglipImageProcessor, SiglipVisionModel
|
37 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
38 |
from diffusers_helper.bucket_tools import find_nearest_bucket
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
free_mem_gb = 6.0 # 默认值
|
47 |
-
print("CUDA
|
48 |
-
|
49 |
-
|
50 |
-
print(f
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
|
55 |
# 使用加载模型的函数
|
56 |
def load_models():
|
|
|
|
|
57 |
print("开始加载模型...")
|
58 |
|
59 |
# 加载模型
|
@@ -93,7 +109,7 @@ def load_models():
|
|
93 |
image_encoder.requires_grad_(False)
|
94 |
transformer.requires_grad_(False)
|
95 |
|
96 |
-
if torch.cuda.is_available()
|
97 |
if not high_vram:
|
98 |
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
99 |
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
@@ -105,28 +121,61 @@ def load_models():
|
|
105 |
vae.to(gpu)
|
106 |
transformer.to(gpu)
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
# 使用Hugging Face Spaces GPU装饰器
|
111 |
if IN_HF_SPACE and 'spaces' in globals():
|
112 |
@spaces.GPU
|
113 |
-
def
|
|
|
114 |
return load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
stream = AsyncStream()
|
123 |
|
124 |
-
|
125 |
-
os.makedirs(outputs_folder, exist_ok=True)
|
126 |
|
127 |
|
128 |
@torch.no_grad()
|
129 |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
131 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
132 |
|
|
|
30 |
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
31 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
32 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
33 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
|
34 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
35 |
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
36 |
from transformers import SiglipImageProcessor, SiglipVisionModel
|
37 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
38 |
from diffusers_helper.bucket_tools import find_nearest_bucket
|
39 |
|
40 |
+
outputs_folder = './outputs/'
|
41 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
42 |
+
|
43 |
+
# 在Spaces环境中,我们延迟所有CUDA操作
|
44 |
+
if not IN_HF_SPACE:
|
45 |
+
# 仅在非Spaces环境中获取CUDA内存
|
46 |
+
try:
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
49 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
50 |
+
else:
|
51 |
+
free_mem_gb = 6.0 # 默认值
|
52 |
+
print("CUDA不可用,使用默认的内存设置")
|
53 |
+
except Exception as e:
|
54 |
free_mem_gb = 6.0 # 默认值
|
55 |
+
print(f"获取CUDA内存时出错: {e},使用默认的内存设置")
|
56 |
+
|
57 |
+
high_vram = free_mem_gb > 60
|
58 |
+
print(f'High-VRAM Mode: {high_vram}')
|
59 |
+
else:
|
60 |
+
# 在Spaces环境中使用默认值
|
61 |
+
print("在Spaces环境中使用默认内存设置")
|
62 |
+
free_mem_gb = 60.0 # 默认在Spaces中使用较高的值
|
63 |
+
high_vram = True
|
64 |
+
print(f'High-VRAM Mode: {high_vram}')
|
65 |
|
66 |
+
# 使用models变量存储全局模型引用
|
67 |
+
models = {}
|
68 |
|
69 |
# 使用加载模型的函数
|
70 |
def load_models():
|
71 |
+
global models
|
72 |
+
|
73 |
print("开始加载模型...")
|
74 |
|
75 |
# 加载模型
|
|
|
109 |
image_encoder.requires_grad_(False)
|
110 |
transformer.requires_grad_(False)
|
111 |
|
112 |
+
if torch.cuda.is_available():
|
113 |
if not high_vram:
|
114 |
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
115 |
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
|
|
121 |
vae.to(gpu)
|
122 |
transformer.to(gpu)
|
123 |
|
124 |
+
# 保存到全局变量
|
125 |
+
models = {
|
126 |
+
'text_encoder': text_encoder,
|
127 |
+
'text_encoder_2': text_encoder_2,
|
128 |
+
'tokenizer': tokenizer,
|
129 |
+
'tokenizer_2': tokenizer_2,
|
130 |
+
'vae': vae,
|
131 |
+
'feature_extractor': feature_extractor,
|
132 |
+
'image_encoder': image_encoder,
|
133 |
+
'transformer': transformer
|
134 |
+
}
|
135 |
+
|
136 |
+
return models
|
137 |
+
|
138 |
|
139 |
# 使用Hugging Face Spaces GPU装饰器
|
140 |
if IN_HF_SPACE and 'spaces' in globals():
|
141 |
@spaces.GPU
|
142 |
+
def initialize_models():
|
143 |
+
"""在@spaces.GPU装饰器内初始化模型"""
|
144 |
return load_models()
|
145 |
+
|
146 |
+
|
147 |
+
# 以下函数内部会延迟获取模型
|
148 |
+
def get_models():
|
149 |
+
"""获取模型,如果尚未加载则加载模型"""
|
150 |
+
global models
|
151 |
|
152 |
+
if not models:
|
153 |
+
if IN_HF_SPACE and 'spaces' in globals():
|
154 |
+
print("使用@spaces.GPU装饰器加载模型")
|
155 |
+
models = initialize_models()
|
156 |
+
else:
|
157 |
+
print("直接加载模型")
|
158 |
+
load_models()
|
159 |
+
|
160 |
+
return models
|
161 |
|
|
|
162 |
|
163 |
+
stream = AsyncStream()
|
|
|
164 |
|
165 |
|
166 |
@torch.no_grad()
|
167 |
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
168 |
+
# 获取模型
|
169 |
+
models = get_models()
|
170 |
+
text_encoder = models['text_encoder']
|
171 |
+
text_encoder_2 = models['text_encoder_2']
|
172 |
+
tokenizer = models['tokenizer']
|
173 |
+
tokenizer_2 = models['tokenizer_2']
|
174 |
+
vae = models['vae']
|
175 |
+
feature_extractor = models['feature_extractor']
|
176 |
+
image_encoder = models['image_encoder']
|
177 |
+
transformer = models['transformer']
|
178 |
+
|
179 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
180 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
181 |
|
diffusers_helper/memory.py
CHANGED
@@ -10,17 +10,26 @@ IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
|
10 |
# 设置CPU设备
|
11 |
cpu = torch.device('cpu')
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
if
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
gpu_complete_modules = []
|
26 |
|
@@ -73,7 +82,11 @@ class DynamicSwapInstaller:
|
|
73 |
return
|
74 |
|
75 |
|
76 |
-
def fake_diffusers_current_device(model: torch.nn.Module, target_device
|
|
|
|
|
|
|
|
|
77 |
if hasattr(model, 'scale_shift_table'):
|
78 |
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
79 |
return
|
@@ -88,6 +101,10 @@ def get_cuda_free_memory_gb(device=None):
|
|
88 |
if device is None:
|
89 |
device = gpu
|
90 |
|
|
|
|
|
|
|
|
|
91 |
# 如果不是CUDA设备,返回默认值
|
92 |
if device.type != 'cuda':
|
93 |
print("无法获取非CUDA设备的内存信息,返回默认值")
|
@@ -109,8 +126,17 @@ def get_cuda_free_memory_gb(device=None):
|
|
109 |
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
110 |
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# 如果目标设备是CPU或当前在CPU上,直接移动
|
113 |
-
if target_device.type == 'cpu' or
|
114 |
model.to(device=target_device)
|
115 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
116 |
return
|
@@ -131,8 +157,17 @@ def move_model_to_device_with_memory_preservation(model, target_device, preserve
|
|
131 |
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
132 |
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
# 如果目标设备是CPU或当前在CPU上,直接处理
|
135 |
-
if target_device.type == 'cpu' or
|
136 |
model.to(device=cpu)
|
137 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
138 |
return
|
@@ -161,6 +196,10 @@ def unload_complete_models(*args):
|
|
161 |
|
162 |
|
163 |
def load_model_as_complete(model, target_device, unload=True):
|
|
|
|
|
|
|
|
|
164 |
if unload:
|
165 |
unload_complete_models()
|
166 |
|
|
|
10 |
# 设置CPU设备
|
11 |
cpu = torch.device('cpu')
|
12 |
|
13 |
+
# 在Stateless GPU环境中,不要在主进程初始化CUDA
|
14 |
+
def get_gpu_device():
|
15 |
+
if IN_HF_SPACE:
|
16 |
+
# 在Spaces中将延迟初始化GPU设备
|
17 |
+
return 'cuda' # 返回字符串,而不是实际初始化设备
|
18 |
+
|
19 |
+
# 非Spaces环境正常初始化
|
20 |
+
try:
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
return torch.device(f'cuda:{torch.cuda.current_device()}')
|
23 |
+
else:
|
24 |
+
print("CUDA不可用,使用CPU作为默认设备")
|
25 |
+
return torch.device('cpu')
|
26 |
+
except Exception as e:
|
27 |
+
print(f"初始化CUDA设备时出错: {e}")
|
28 |
+
print("回退到CPU设备")
|
29 |
+
return torch.device('cpu')
|
30 |
+
|
31 |
+
# 保存一个字符串表示,而不是实际的设备对象
|
32 |
+
gpu = get_gpu_device()
|
33 |
|
34 |
gpu_complete_modules = []
|
35 |
|
|
|
82 |
return
|
83 |
|
84 |
|
85 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device):
|
86 |
+
# 转换字符串设备为torch.device
|
87 |
+
if isinstance(target_device, str):
|
88 |
+
target_device = torch.device(target_device)
|
89 |
+
|
90 |
if hasattr(model, 'scale_shift_table'):
|
91 |
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
92 |
return
|
|
|
101 |
if device is None:
|
102 |
device = gpu
|
103 |
|
104 |
+
# 如果是字符串,转换为设备
|
105 |
+
if isinstance(device, str):
|
106 |
+
device = torch.device(device)
|
107 |
+
|
108 |
# 如果不是CUDA设备,返回默认值
|
109 |
if device.type != 'cuda':
|
110 |
print("无法获取非CUDA设备的内存信息,返回默认值")
|
|
|
126 |
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
127 |
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
128 |
|
129 |
+
# 如果是字符串,转换为设备
|
130 |
+
if isinstance(target_device, str):
|
131 |
+
target_device = torch.device(target_device)
|
132 |
+
|
133 |
+
# 如果gpu是字符串,转换为设备
|
134 |
+
gpu_device = gpu
|
135 |
+
if isinstance(gpu_device, str):
|
136 |
+
gpu_device = torch.device(gpu_device)
|
137 |
+
|
138 |
# 如果目标设备是CPU或当前在CPU上,直接移动
|
139 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
140 |
model.to(device=target_device)
|
141 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
142 |
return
|
|
|
157 |
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
158 |
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
159 |
|
160 |
+
# 如果是字符串,转换为设备
|
161 |
+
if isinstance(target_device, str):
|
162 |
+
target_device = torch.device(target_device)
|
163 |
+
|
164 |
+
# 如果gpu是字符串,转换为设备
|
165 |
+
gpu_device = gpu
|
166 |
+
if isinstance(gpu_device, str):
|
167 |
+
gpu_device = torch.device(gpu_device)
|
168 |
+
|
169 |
# 如果目标设备是CPU或当前在CPU上,直接处理
|
170 |
+
if target_device.type == 'cpu' or gpu_device.type == 'cpu':
|
171 |
model.to(device=cpu)
|
172 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
173 |
return
|
|
|
196 |
|
197 |
|
198 |
def load_model_as_complete(model, target_device, unload=True):
|
199 |
+
# 如果是字符串,转换为设备
|
200 |
+
if isinstance(target_device, str):
|
201 |
+
target_device = torch.device(target_device)
|
202 |
+
|
203 |
if unload:
|
204 |
unload_complete_models()
|
205 |
|