framepack-i2v / diffusers_helper /models /hunyuan_video_packed.py
lllyasviel
i
9360743
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import einops
import torch.nn as nn
import numpy as np
from diffusers.loaders import FromOriginalModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.utils import logging
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers_helper.dit_common import LayerNorm
from diffusers_helper.utils import zero_module
enabled_backends = []
if torch.backends.cuda.flash_sdp_enabled():
enabled_backends.append("flash")
if torch.backends.cuda.math_sdp_enabled():
enabled_backends.append("math")
if torch.backends.cuda.mem_efficient_sdp_enabled():
enabled_backends.append("mem_efficient")
if torch.backends.cuda.cudnn_sdp_enabled():
enabled_backends.append("cudnn")
print("Currently enabled native sdp backends:", enabled_backends)
try:
# raise NotImplementedError
from xformers.ops import memory_efficient_attention as xformers_attn_func
print('Xformers is installed!')
except:
print('Xformers is not installed!')
xformers_attn_func = None
try:
# raise NotImplementedError
from flash_attn import flash_attn_varlen_func, flash_attn_func
print('Flash Attn is installed!')
except:
print('Flash Attn is not installed!')
flash_attn_varlen_func = None
flash_attn_func = None
try:
# raise NotImplementedError
from sageattention import sageattn_varlen, sageattn
print('Sage Attn is installed!')
except:
print('Sage Attn is not installed!')
sageattn_varlen = None
sageattn = None
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def pad_for_3d_conv(x, kernel_size):
b, c, t, h, w = x.shape
pt, ph, pw = kernel_size
pad_t = (pt - (t % pt)) % pt
pad_h = (ph - (h % ph)) % ph
pad_w = (pw - (w % pw)) % pw
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
def center_down_sample_3d(x, kernel_size):
# pt, ph, pw = kernel_size
# cp = (pt * ph * pw) // 2
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
# xc = xp[cp]
# return xc
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
def get_cu_seqlens(text_mask, img_len):
batch_size = text_mask.shape[0]
text_len = text_mask.sum(dim=1)
max_len = text_mask.shape[1] + img_len
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
for i in range(batch_size):
s = text_len[i] + img_len
s1 = i * max_len + s
s2 = (i + 1) * max_len
cu_seqlens[2 * i + 1] = s1
cu_seqlens[2 * i + 2] = s2
return cu_seqlens
def apply_rotary_emb_transposed(x, freqs_cis):
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = x.float() * cos + x_rotated.float() * sin
out = out.to(x)
return out
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
if sageattn is not None:
x = sageattn(q, k, v, tensor_layout='NHD')
return x
if flash_attn_func is not None:
x = flash_attn_func(q, k, v)
return x
if xformers_attn_func is not None:
x = xformers_attn_func(q, k, v)
return x
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
return x
batch_size = q.shape[0]
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
if sageattn_varlen is not None:
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
elif flash_attn_varlen_func is not None:
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
else:
raise NotImplementedError('No Attn Installed!')
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
return x
class HunyuanAttnProcessorFlashAttnDouble:
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
query = attn.norm_q(query)
key = attn.norm_k(key)
query = apply_rotary_emb_transposed(query, image_rotary_emb)
key = apply_rotary_emb_transposed(key, image_rotary_emb)
encoder_query = attn.add_q_proj(encoder_hidden_states)
encoder_key = attn.add_k_proj(encoder_hidden_states)
encoder_value = attn.add_v_proj(encoder_hidden_states)
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
encoder_query = attn.norm_added_q(encoder_query)
encoder_key = attn.norm_added_k(encoder_key)
query = torch.cat([query, encoder_query], dim=1)
key = torch.cat([key, encoder_key], dim=1)
value = torch.cat([value, encoder_value], dim=1)
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
hidden_states = hidden_states.flatten(-2)
txt_length = encoder_hidden_states.shape[1]
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
hidden_states = attn.to_out[0](hidden_states)
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
class HunyuanAttnProcessorFlashAttnSingle:
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(2, (attn.heads, -1))
key = key.unflatten(2, (attn.heads, -1))
value = value.unflatten(2, (attn.heads, -1))
query = attn.norm_q(query)
key = attn.norm_k(key)
txt_length = encoder_hidden_states.shape[1]
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
hidden_states = hidden_states.flatten(-2)
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
return hidden_states, encoder_hidden_states
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, guidance, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
time_guidance_emb = timesteps_emb + guidance_emb
pooled_projections = self.text_embedder(pooled_projection)
conditioning = time_guidance_emb + pooled_projections
return conditioning
class CombinedTimestepTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
return conditioning
class HunyuanVideoAdaNorm(nn.Module):
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
super().__init__()
out_features = out_features or 2 * in_features
self.linear = nn.Linear(in_features, out_features)
self.nonlinearity = nn.SiLU()
def forward(
self, temb: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
temb = self.linear(self.nonlinearity(temb))
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
return gate_msa, gate_mlp
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_width_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
attention_bias: bool = True,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
heads=num_attention_heads,
dim_head=attention_head_dim,
bias=attention_bias,
)
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
)
gate_msa, gate_mlp = self.norm_out(temb)
hidden_states = hidden_states + attn_output * gate_msa
ff_output = self.ff(self.norm2(hidden_states))
hidden_states = hidden_states + ff_output * gate_mlp
return hidden_states
class HunyuanVideoIndividualTokenRefiner(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
num_layers: int,
mlp_width_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
attention_bias: bool = True,
) -> None:
super().__init__()
self.refiner_blocks = nn.ModuleList(
[
HunyuanVideoIndividualTokenRefinerBlock(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_width_ratio=mlp_width_ratio,
mlp_drop_rate=mlp_drop_rate,
attention_bias=attention_bias,
)
for _ in range(num_layers)
]
)
def forward(
self,
hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> None:
self_attn_mask = None
if attention_mask is not None:
batch_size = attention_mask.shape[0]
seq_len = attention_mask.shape[1]
attention_mask = attention_mask.to(hidden_states.device).bool()
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
self_attn_mask[:, :, :, 0] = True
for block in self.refiner_blocks:
hidden_states = block(hidden_states, temb, self_attn_mask)
return hidden_states
class HunyuanVideoTokenRefiner(nn.Module):
def __init__(
self,
in_channels: int,
num_attention_heads: int,
attention_head_dim: int,
num_layers: int,
mlp_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
attention_bias: bool = True,
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
embedding_dim=hidden_size, pooled_projection_dim=in_channels
)
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
num_layers=num_layers,
mlp_width_ratio=mlp_ratio,
mlp_drop_rate=mlp_drop_rate,
attention_bias=attention_bias,
)
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
attention_mask: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
if attention_mask is None:
pooled_projections = hidden_states.mean(dim=1)
else:
original_dtype = hidden_states.dtype
mask_float = attention_mask.float().unsqueeze(-1)
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
pooled_projections = pooled_projections.to(original_dtype)
temb = self.time_text_embed(timestep, pooled_projections)
hidden_states = self.proj_in(hidden_states)
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
return hidden_states
class HunyuanVideoRotaryPosEmbed(nn.Module):
def __init__(self, rope_dim, theta):
super().__init__()
self.DT, self.DY, self.DX = rope_dim
self.theta = theta
@torch.no_grad()
def get_frequency(self, dim, pos):
T, H, W = pos.shape
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
return freqs.cos(), freqs.sin()
@torch.no_grad()
def forward_inner(self, frame_indices, height, width, device):
GT, GY, GX = torch.meshgrid(
frame_indices.to(device=device, dtype=torch.float32),
torch.arange(0, height, device=device, dtype=torch.float32),
torch.arange(0, width, device=device, dtype=torch.float32),
indexing="ij"
)
FCT, FST = self.get_frequency(self.DT, GT)
FCY, FSY = self.get_frequency(self.DY, GY)
FCX, FSX = self.get_frequency(self.DX, GX)
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
return result.to(device)
@torch.no_grad()
def forward(self, frame_indices, height, width, device):
frame_indices = frame_indices.unbind(0)
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
results = torch.stack(results, dim=0)
return results
class AdaLayerNormZero(nn.Module):
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(
self,
x: torch.Tensor,
emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = emb.unsqueeze(-2)
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
x = self.norm(x) * (1 + scale_msa) + shift_msa
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class AdaLayerNormZeroSingle(nn.Module):
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(
self,
x: torch.Tensor,
emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = emb.unsqueeze(-2)
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
x = self.norm(x) * (1 + scale_msa) + shift_msa
return x, gate_msa
class AdaLayerNormContinuous(nn.Module):
def __init__(
self,
embedding_dim: int,
conditioning_embedding_dim: int,
elementwise_affine=True,
eps=1e-5,
bias=True,
norm_type="layer_norm",
):
super().__init__()
self.silu = nn.SiLU()
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
if norm_type == "layer_norm":
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
else:
raise ValueError(f"unknown norm_type {norm_type}")
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
emb = emb.unsqueeze(-2)
emb = self.linear(self.silu(emb))
scale, shift = emb.chunk(2, dim=-1)
x = self.norm(x) * (1 + scale) + shift
return x
class HunyuanVideoSingleTransformerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float = 4.0,
qk_norm: str = "rms_norm",
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
mlp_dim = int(hidden_size * mlp_ratio)
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=hidden_size,
bias=True,
processor=HunyuanAttnProcessorFlashAttnSingle(),
qk_norm=qk_norm,
eps=1e-6,
pre_only=True,
)
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
self.act_mlp = nn.GELU(approximate="tanh")
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
residual = hidden_states
# 1. Input normalization
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
norm_hidden_states, norm_encoder_hidden_states = (
norm_hidden_states[:, :-text_seq_length, :],
norm_hidden_states[:, -text_seq_length:, :],
)
# 2. Attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
)
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
# 3. Modulation and residual connection
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = hidden_states + residual
hidden_states, encoder_hidden_states = (
hidden_states[:, :-text_seq_length, :],
hidden_states[:, -text_seq_length:, :],
)
return hidden_states, encoder_hidden_states
class HunyuanVideoTransformerBlock(nn.Module):
def __init__(
self,
num_attention_heads: int,
attention_head_dim: int,
mlp_ratio: float,
qk_norm: str = "rms_norm",
) -> None:
super().__init__()
hidden_size = num_attention_heads * attention_head_dim
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
self.attn = Attention(
query_dim=hidden_size,
cross_attention_dim=None,
added_kv_proj_dim=hidden_size,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=hidden_size,
context_pre_only=False,
bias=True,
processor=HunyuanAttnProcessorFlashAttnDouble(),
qk_norm=qk_norm,
eps=1e-6,
)
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Input normalization
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
# 2. Joint attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=freqs_cis,
)
# 3. Modulation and residual connection
hidden_states = hidden_states + attn_output * gate_msa
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
norm_hidden_states = self.norm2(hidden_states)
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
hidden_states = hidden_states + gate_mlp * ff_output
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
return hidden_states, encoder_hidden_states
class ClipVisionProjection(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.Linear(in_channels, out_channels * 3)
self.down = nn.Linear(out_channels * 3, out_channels)
def forward(self, x):
projected_x = self.down(nn.functional.silu(self.up(x)))
return projected_x
class HunyuanVideoPatchEmbed(nn.Module):
def __init__(self, patch_size, in_chans, embed_dim):
super().__init__()
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
def __init__(self, inner_dim):
super().__init__()
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
@torch.no_grad()
def initialize_weight_from_another_conv3d(self, another_layer):
weight = another_layer.weight.detach().clone()
bias = another_layer.bias.detach().clone()
sd = {
'proj.weight': weight.clone(),
'proj.bias': bias.clone(),
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
'proj_2x.bias': bias.clone(),
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
'proj_4x.bias': bias.clone(),
}
sd = {k: v.clone() for k, v in sd.items()}
self.load_state_dict(sd)
return
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
@register_to_config
def __init__(
self,
in_channels: int = 16,
out_channels: int = 16,
num_attention_heads: int = 24,
attention_head_dim: int = 128,
num_layers: int = 20,
num_single_layers: int = 40,
num_refiner_layers: int = 2,
mlp_ratio: float = 4.0,
patch_size: int = 2,
patch_size_t: int = 1,
qk_norm: str = "rms_norm",
guidance_embeds: bool = True,
text_embed_dim: int = 4096,
pooled_projection_dim: int = 768,
rope_theta: float = 256.0,
rope_axes_dim: Tuple[int] = (16, 56, 56),
has_image_proj=False,
image_proj_dim=1152,
has_clean_x_embedder=False,
) -> None:
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
out_channels = out_channels or in_channels
# 1. Latent and condition embedders
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
self.context_embedder = HunyuanVideoTokenRefiner(
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
)
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
self.clean_x_embedder = None
self.image_projection = None
# 2. RoPE
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
# 3. Dual stream transformer blocks
self.transformer_blocks = nn.ModuleList(
[
HunyuanVideoTransformerBlock(
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
)
for _ in range(num_layers)
]
)
# 4. Single stream transformer blocks
self.single_transformer_blocks = nn.ModuleList(
[
HunyuanVideoSingleTransformerBlock(
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
)
for _ in range(num_single_layers)
]
)
# 5. Output projection
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
self.inner_dim = inner_dim
self.use_gradient_checkpointing = False
self.enable_teacache = False
if has_image_proj:
self.install_image_projection(image_proj_dim)
if has_clean_x_embedder:
self.install_clean_x_embedder()
self.high_quality_fp32_output_for_inference = False
def install_image_projection(self, in_channels):
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
self.config['has_image_proj'] = True
self.config['image_proj_dim'] = in_channels
def install_clean_x_embedder(self):
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
self.config['has_clean_x_embedder'] = True
def enable_gradient_checkpointing(self):
self.use_gradient_checkpointing = True
print('self.use_gradient_checkpointing = True')
def disable_gradient_checkpointing(self):
self.use_gradient_checkpointing = False
print('self.use_gradient_checkpointing = False')
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
self.enable_teacache = enable_teacache
self.cnt = 0
self.num_steps = num_steps
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.previous_residual = None
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
def gradient_checkpointing_method(self, block, *args):
if self.use_gradient_checkpointing:
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
else:
result = block(*args)
return result
def process_input_hidden_states(
self,
latents, latent_indices=None,
clean_latents=None, clean_latent_indices=None,
clean_latents_2x=None, clean_latent_2x_indices=None,
clean_latents_4x=None, clean_latent_4x_indices=None
):
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
B, C, T, H, W = hidden_states.shape
if latent_indices is None:
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
if clean_latents is not None and clean_latent_indices is not None:
clean_latents = clean_latents.to(hidden_states)
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
clean_latents = clean_latents.flatten(2).transpose(1, 2)
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
clean_latents_2x = clean_latents_2x.to(hidden_states)
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
clean_latents_4x = clean_latents_4x.to(hidden_states)
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
return hidden_states, rope_freqs
def forward(
self,
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
latent_indices=None,
clean_latents=None, clean_latent_indices=None,
clean_latents_2x=None, clean_latent_2x_indices=None,
clean_latents_4x=None, clean_latent_4x_indices=None,
image_embeddings=None,
attention_kwargs=None, return_dict=True
):
if attention_kwargs is None:
attention_kwargs = {}
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p, p_t = self.config['patch_size'], self.config['patch_size_t']
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
if self.image_projection is not None:
assert image_embeddings is not None, 'You must use image embeddings!'
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
# must cat before (not after) encoder_hidden_states, due to attn masking
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
with torch.no_grad():
if batch_size == 1:
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
# If they are not same, then their impls are wrong. Ours are always the correct one.
text_len = encoder_attention_mask.sum().item()
encoder_hidden_states = encoder_hidden_states[:, :text_len]
attention_mask = None, None, None, None
else:
img_seq_len = hidden_states.shape[1]
txt_seq_len = encoder_hidden_states.shape[1]
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
cu_seqlens_kv = cu_seqlens_q
max_seqlen_q = img_seq_len + txt_seq_len
max_seqlen_kv = max_seqlen_q
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
if self.enable_teacache:
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
if self.cnt == 0 or self.cnt == self.num_steps-1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
if should_calc:
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.cnt += 1
if self.cnt == self.num_steps:
self.cnt = 0
if not should_calc:
hidden_states = hidden_states + self.previous_residual
else:
ori_hidden_states = hidden_states.clone()
for block_id, block in enumerate(self.transformer_blocks):
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
rope_freqs
)
for block_id, block in enumerate(self.single_transformer_blocks):
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
rope_freqs
)
self.previous_residual = hidden_states - ori_hidden_states
else:
for block_id, block in enumerate(self.transformer_blocks):
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
rope_freqs
)
for block_id, block in enumerate(self.single_transformer_blocks):
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
rope_freqs
)
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
hidden_states = hidden_states[:, -original_context_length:, :]
if self.high_quality_fp32_output_for_inference:
hidden_states = hidden_states.to(dtype=torch.float32)
if self.proj_out.weight.dtype != torch.float32:
self.proj_out.to(dtype=torch.float32)
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
pt=p_t, ph=p, pw=p)
if return_dict:
return Transformer2DModelOutput(sample=hidden_states)
return hidden_states,