import os
import html
import ftfy
import regex as re
from pathlib import Path
import torch
from functools import lru_cache
import youtokentome as yttm
from tokenizers import Tokenizer
from tokenizers.processors import ByteLevel
# OpenAI simple tokenizer
@lru_cache()
def default_bpe(bpe_path = "data/bpe_simple_vocab_16e6.txt"):
return os.path.join(os.path.dirname(os.path.abspath(__file__)), bpe_path)
@lru_cache()
def bytes_to_unicode():
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path = default_bpe()):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = Path(bpe_path).read_text(encoding='utf8').split('\n')
merges = merges[1:49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + '' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.vocab_size = 49408
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = re.compile(
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + '',)
pairs = get_pairs(word)
if not pairs:
return token + ''
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens, remove_start_end = True):
if torch.is_tensor(tokens):
tokens = tokens.tolist()
if remove_start_end:
tokens = [token for token in tokens if token not in (49406, 40407, 0)]
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ')
return text
def tokenize(self, texts, context_length = 256, truncate_text = False):
if isinstance(texts, str):
texts = [texts]
all_tokens = [self.encode(text) for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate_text:
tokens = tokens[:context_length]
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result
# txt_tokenizer = SimpleTokenizer()
# huggingface tokenizer
class HugTokenizer:
def __init__(self, bpe_path):
bpe_path = Path(default_bpe(bpe_path = bpe_path))
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
tokenizer = Tokenizer.from_file(str(bpe_path))
tokenizer.post_processor = ByteLevel(trim_offsets = True)
self.tokenizer = tokenizer
self.vocab_size = tokenizer.get_vocab_size()
def decode(self, tokens):
if torch.is_tensor(tokens):
tokens = tokens.tolist()
tokens = [token for token in tokens if token not in (0,)]
return self.tokenizer.decode(tokens, skip_special_tokens = True)
def encode(self, text):
return self.tokenizer.encode(text).ids
def tokenize(self, texts, context_length = 256, truncate_text = False):
if isinstance(texts, str):
texts = [texts]
all_tokens = [self.encode(text) for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate_text:
tokens = tokens[:context_length]
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
return result
txt_tokenizer = HugTokenizer(bpe_path = "data/byte-level-bpe_4k.tokenizer.json")
# yttm tokenizer
class YttmTokenizer:
def __init__(self, bpe_path = None):
bpe_path = Path(default_bpe(bpe_path = bpe_path))
assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist'
tokenizer = yttm.BPE(model = str(bpe_path))
self.tokenizer = tokenizer
self.vocab_size = tokenizer.vocab_size()
def decode(self, tokens):
if torch.is_tensor(tokens):
tokens = tokens.tolist()
return self.tokenizer.decode(tokens, ignore_ids = [0])
def encode(self, texts):
encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID)
return list(map(torch.tensor, encoded))
def tokenize(self, texts, context_length = 256, truncate_text = False):
if isinstance(texts, str):
texts = [texts]
all_tokens = self.encode(texts)
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate_text:
tokens = tokens[:context_length]
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = tokens.detach().clone()
return result
# txt_tokenizer = YttmTokenizer(bpe_path = "data/byte-level-bpe.tokenizer.json")