import os import html import ftfy import regex as re from pathlib import Path import torch from functools import lru_cache import youtokentome as yttm from tokenizers import Tokenizer from tokenizers.processors import ByteLevel # OpenAI simple tokenizer @lru_cache() def default_bpe(bpe_path = "data/bpe_simple_vocab_16e6.txt"): return os.path.join(os.path.dirname(os.path.abspath(__file__)), bpe_path) @lru_cache() def bytes_to_unicode(): bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = Path(bpe_path).read_text(encoding='utf8').split('\n') merges = merges[1:49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + '' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.vocab_size = 49408 self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '',) pairs = get_pairs(word) if not pairs: return token + '' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens, remove_start_end = True): if torch.is_tensor(tokens): tokens = tokens.tolist() if remove_start_end: tokens = [token for token in tokens if token not in (49406, 40407, 0)] text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') return text def tokenize(self, texts, context_length = 256, truncate_text = False): if isinstance(texts, str): texts = [texts] all_tokens = [self.encode(text) for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result # txt_tokenizer = SimpleTokenizer() # huggingface tokenizer class HugTokenizer: def __init__(self, bpe_path): bpe_path = Path(default_bpe(bpe_path = bpe_path)) assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist' tokenizer = Tokenizer.from_file(str(bpe_path)) tokenizer.post_processor = ByteLevel(trim_offsets = True) self.tokenizer = tokenizer self.vocab_size = tokenizer.get_vocab_size() def decode(self, tokens): if torch.is_tensor(tokens): tokens = tokens.tolist() tokens = [token for token in tokens if token not in (0,)] return self.tokenizer.decode(tokens, skip_special_tokens = True) def encode(self, text): return self.tokenizer.encode(text).ids def tokenize(self, texts, context_length = 256, truncate_text = False): if isinstance(texts, str): texts = [texts] all_tokens = [self.encode(text) for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result txt_tokenizer = HugTokenizer(bpe_path = "data/byte-level-bpe_4k.tokenizer.json") # yttm tokenizer class YttmTokenizer: def __init__(self, bpe_path = None): bpe_path = Path(default_bpe(bpe_path = bpe_path)) assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist' tokenizer = yttm.BPE(model = str(bpe_path)) self.tokenizer = tokenizer self.vocab_size = tokenizer.vocab_size() def decode(self, tokens): if torch.is_tensor(tokens): tokens = tokens.tolist() return self.tokenizer.decode(tokens, ignore_ids = [0]) def encode(self, texts): encoded = self.tokenizer.encode(texts, output_type = yttm.OutputType.ID) return list(map(torch.tensor, encoded)) def tokenize(self, texts, context_length = 256, truncate_text = False): if isinstance(texts, str): texts = [texts] all_tokens = self.encode(texts) result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = tokens.detach().clone() return result # txt_tokenizer = YttmTokenizer(bpe_path = "data/byte-level-bpe.tokenizer.json")