Khalil
First commit, add text2punps scripts, app file, and requirements file
b41a54a
raw
history blame
12.7 kB
import math
from einops import rearrange, repeat
import torch
from torch import nn, einsum
import torch.nn.functional as F
from axial_positional_embedding import AxialPositionalEmbedding
from text2punks.transformer import Transformer
# helpers fns
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# sampling helpers fn
def top_k(logits, thres = 0.5):
num_logits = logits.shape[-1]
k = max(int((1 - thres) * num_logits), 1)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
# main CLIP class
class CLIP(nn.Module):
def __init__(
self,
*,
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 10000,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
num_visual_tokens = 256,
visual_enc_depth = 6,
visual_image_seq_len = 256,
visual_image_size = 24,
visual_heads = 8,
attn_pdrop = 0.1,
resid_pdrop = 0.1,
embd_pdrop = 0.1,
ff_dropout = 0.1,
attn_types = None
):
super().__init__()
# Texts
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
self.text_transformer = Transformer(
dim = dim_text,
causal = False,
seq_len = text_seq_len,
depth = text_enc_depth,
heads = text_heads,
dim_head = dim_text // text_heads,
attn_dropout = attn_pdrop,
resid_dropout = resid_pdrop,
embd_dropout = embd_pdrop,
ff_dropout = ff_dropout,
attn_types = attn_types
)
self.text_ln = nn.LayerNorm(dim_text)
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias = False)
# Images
self.image_emb = nn.Embedding(num_visual_tokens, dim_image)
self.image_pos_emb = nn.Embedding(visual_image_seq_len, dim_image)
self.visual_transformer = Transformer(
dim = dim_image,
causal = False,
seq_len = visual_image_seq_len,
depth = visual_enc_depth,
heads = visual_heads,
dim_head = dim_image // visual_heads,
attn_dropout = attn_pdrop,
resid_dropout = resid_pdrop,
embd_dropout = embd_pdrop,
ff_dropout = ff_dropout,
attn_types = attn_types,
image_size = visual_image_size,
)
self.image_ln = nn.LayerNorm(dim_image)
self.to_visual_latent = nn.Linear(dim_image, dim_latent, bias = False)
self.temperature = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(
self,
text,
image,
return_loss = False
):
b, device= text.shape[0], text.device
text_emb = self.text_emb(text)
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device = device))
image_emb = self.image_emb(image)
image_emb += self.image_pos_emb(torch.arange(image.shape[1], device = device))
enc_text = self.text_transformer(text_emb)
enc_image = self.visual_transformer(image_emb)
text_latents = enc_text.mean(dim = 1)
image_latents = enc_image.mean(dim = 1)
text_latents = self.text_ln(text_latents)
image_latents = self.image_ln(image_latents)
text_latents = self.to_text_latent(text_latents)
image_latents = self.to_visual_latent(image_latents)
text_latents, image_latents = map(lambda t: F.normalize(t, p = 2, dim = -1), (text_latents, image_latents))
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, image_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, image_latents) * temp
labels = torch.arange(b, device = device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss
# main Text2Punks class
class Text2Punks(nn.Module):
def __init__(
self,
*,
n_embd,
n_layer = 12,
n_head = 12,
d_head = 64,
num_text_tokens = 10000,
text_seq_len = 256,
num_image_tokens = 222,
image_seq_len = 576,
image_size = 24,
attn_pdrop = 0.1,
resid_pdrop = 0.1,
embd_pdrop = 0.1,
ff_dropout = 0.1,
attn_types = None,
loss_img_weight = 7,
loss_txt_weight = 7,
):
super().__init__()
num_text_tokens = num_text_tokens + text_seq_len # reserve unique padding tokens for each position (text seq len)
self.text_emb = nn.Embedding(num_text_tokens, n_embd)
self.image_emb = nn.Embedding(num_image_tokens, n_embd)
self.text_pos_emb = nn.Embedding(text_seq_len + 1, n_embd) # +1 for <bos> a.k.a <sos>
# self.image_pos_emb = nn.Embedding(image_seq_len, n_embd)
self.image_pos_emb = nn.Parameter(torch.zeros(1, image_seq_len, n_embd))
# self.image_pos_emb = AxialPositionalEmbedding(n_embd, axial_shape=(image_size, image_size))
self.num_text_tokens = num_text_tokens # for offsetting logits index and calculating cross entropy loss
self.num_image_tokens = num_image_tokens
self.text_seq_len = text_seq_len
self.image_seq_len = image_seq_len
seq_len = text_seq_len + image_seq_len
total_tokens = num_text_tokens + num_image_tokens
self.total_seq_len = seq_len
self.total_tokens = total_tokens
self.transformer = Transformer(
dim = n_embd,
causal = True,
seq_len = seq_len,
depth = n_layer,
heads = n_head,
dim_head = d_head,
attn_dropout = attn_pdrop,
resid_dropout = resid_pdrop,
embd_dropout = embd_pdrop,
ff_dropout = ff_dropout,
attn_types = attn_types,
image_size = image_size,
)
self.to_logits = nn.Sequential(
nn.LayerNorm(n_embd),
nn.Linear(n_embd, self.total_tokens),
)
seq_range = torch.arange(seq_len)
logits_range = torch.arange(total_tokens)
seq_range = rearrange(seq_range, 'n -> () n ()')
logits_range = rearrange(logits_range, 'd -> () () d')
logits_mask = (
((seq_range >= text_seq_len) & (logits_range < num_text_tokens)) |
((seq_range < text_seq_len) & (logits_range >= num_text_tokens))
)
self.register_buffer('logits_mask', logits_mask, persistent=False)
self.loss_img_weight = loss_img_weight
self.loss_txt_weight = loss_txt_weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@torch.no_grad()
@eval_decorator
def generate_images(
self,
text,
decoder,
*,
clip = None,
filter_thres = 0.5,
temperature = 1.,
img = None,
num_init_img_tokens = None
):
text_seq_len, image_seq_len, num_text_tokens = self.text_seq_len, self.image_seq_len, self.num_text_tokens
total_len = text_seq_len + image_seq_len
batch = text.shape[0]
text = text[:, :text_seq_len] # make sure text is within bounds
out = text
if exists(img):
assert img.shape[1] == image_seq_len, f'input image must have the correct image size {image_seq_len}'
num_img_tokens = default(num_init_img_tokens, int(0.4375 * image_seq_len)) # OpenAI used 14 * 32 initial tokens to prime
assert num_img_tokens < image_seq_len, 'number of initial image tokens for priming must be less than the total image token sequence length'
trunc_img = img[:, :num_img_tokens]
out = torch.cat((out, trunc_img), dim = -1)
for cur_len in range(out.shape[1], total_len):
is_image = cur_len >= text_seq_len
text, image = out[:, :text_seq_len], out[:, text_seq_len:]
logits = self(text, image)[:, -1, :]
filtered_logits = top_k(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim = -1)
sample = torch.multinomial(probs, 1)
sample -= (num_text_tokens if is_image else 0) # offset sampled token if it is an image token, since logit space is composed of text and then image tokens
out = torch.cat((out, sample), dim=-1)
text_seq = out[:, :text_seq_len]
img_seq = out[:, -image_seq_len:]
scores = None
if exists(clip):
scores = clip(text_seq, img_seq, return_loss = False)
img_seq = repeat(img_seq, 'b p -> b p c', c=3)
decoder = repeat(decoder, 'p c -> b p c', b=batch)
images = torch.gather(decoder, 1, img_seq)
images = rearrange(images, 'b (h w) c-> b c h w', h=24, w =24)
images = images.float()
return images, scores
def forward(
self,
text,
image = None,
return_loss = False
):
assert text.shape[-1] == self.text_seq_len, f'the length {text.shape[-1]} of the text tokens you passed in does not have the correct length ({self.text_seq_len})'
device, total_seq_len = text.device, self.total_seq_len
text_range = torch.arange(self.text_seq_len, device = device) + (self.num_text_tokens - self.text_seq_len)
text = torch.where(text == 0, text_range, text)
text = F.pad(text, (1, 0), value = 0) # add <bos>
tokens = self.text_emb(text)
tokens += self.text_pos_emb(torch.arange(text.shape[1], device = device))
seq_len = tokens.shape[1]
image_len = image.shape[1]
image_emb = self.image_emb(image)
# image_emb += self.image_pos_emb(torch.arange(image_len, device = device))
image_emb += self.image_pos_emb[:, :image_len, :]
# image_emb += self.image_pos_emb(image_emb)
tokens = torch.cat((tokens, image_emb), dim = 1)
seq_len += image_len
# when training, if the length exceeds the total text + image length
# remove the last token, since it needs not to be trained
if tokens.shape[1] > total_seq_len:
seq_len -= 1
tokens = tokens[:, :-1]
out = self.transformer(tokens)
logits = self.to_logits(out)
# mask logits to make sure text predicts text (except last token), and image predicts image
logits_mask = self.logits_mask[:, :seq_len]
max_neg_value = -torch.finfo(logits.dtype).max
logits.masked_fill_(logits_mask, max_neg_value)
if not return_loss:
return logits
assert exists(image), 'when training, image must be supplied'
offsetted_image = image + self.num_text_tokens
labels = torch.cat((text[:, 1:], offsetted_image), dim = 1)
logits = rearrange(logits, 'b n c -> b c n')
loss_text = F.cross_entropy(logits[:, :, :self.text_seq_len], labels[:, :self.text_seq_len])
loss_img = F.cross_entropy(logits[:, :, self.text_seq_len:], labels[:, self.text_seq_len:])
loss = (self.loss_txt_weight * loss_text + self.loss_img_weight * loss_img) / (self.loss_img_weight + self.loss_txt_weight)
return loss, loss_text, loss_img