Spaces:
Build error
Build error
File size: 12,712 Bytes
b41a54a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import math
from einops import rearrange, repeat
import torch
from torch import nn, einsum
import torch.nn.functional as F
from axial_positional_embedding import AxialPositionalEmbedding
from text2punks.transformer import Transformer
# helpers fns
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# sampling helpers fn
def top_k(logits, thres = 0.5):
num_logits = logits.shape[-1]
k = max(int((1 - thres) * num_logits), 1)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(1, ind, val)
return probs
# main CLIP class
class CLIP(nn.Module):
def __init__(
self,
*,
dim_text = 512,
dim_image = 512,
dim_latent = 512,
num_text_tokens = 10000,
text_enc_depth = 6,
text_seq_len = 256,
text_heads = 8,
num_visual_tokens = 256,
visual_enc_depth = 6,
visual_image_seq_len = 256,
visual_image_size = 24,
visual_heads = 8,
attn_pdrop = 0.1,
resid_pdrop = 0.1,
embd_pdrop = 0.1,
ff_dropout = 0.1,
attn_types = None
):
super().__init__()
# Texts
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
self.text_pos_emb = nn.Embedding(text_seq_len, dim_text)
self.text_transformer = Transformer(
dim = dim_text,
causal = False,
seq_len = text_seq_len,
depth = text_enc_depth,
heads = text_heads,
dim_head = dim_text // text_heads,
attn_dropout = attn_pdrop,
resid_dropout = resid_pdrop,
embd_dropout = embd_pdrop,
ff_dropout = ff_dropout,
attn_types = attn_types
)
self.text_ln = nn.LayerNorm(dim_text)
self.to_text_latent = nn.Linear(dim_text, dim_latent, bias = False)
# Images
self.image_emb = nn.Embedding(num_visual_tokens, dim_image)
self.image_pos_emb = nn.Embedding(visual_image_seq_len, dim_image)
self.visual_transformer = Transformer(
dim = dim_image,
causal = False,
seq_len = visual_image_seq_len,
depth = visual_enc_depth,
heads = visual_heads,
dim_head = dim_image // visual_heads,
attn_dropout = attn_pdrop,
resid_dropout = resid_pdrop,
embd_dropout = embd_pdrop,
ff_dropout = ff_dropout,
attn_types = attn_types,
image_size = visual_image_size,
)
self.image_ln = nn.LayerNorm(dim_image)
self.to_visual_latent = nn.Linear(dim_image, dim_latent, bias = False)
self.temperature = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(
self,
text,
image,
return_loss = False
):
b, device= text.shape[0], text.device
text_emb = self.text_emb(text)
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device = device))
image_emb = self.image_emb(image)
image_emb += self.image_pos_emb(torch.arange(image.shape[1], device = device))
enc_text = self.text_transformer(text_emb)
enc_image = self.visual_transformer(image_emb)
text_latents = enc_text.mean(dim = 1)
image_latents = enc_image.mean(dim = 1)
text_latents = self.text_ln(text_latents)
image_latents = self.image_ln(image_latents)
text_latents = self.to_text_latent(text_latents)
image_latents = self.to_visual_latent(image_latents)
text_latents, image_latents = map(lambda t: F.normalize(t, p = 2, dim = -1), (text_latents, image_latents))
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, image_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, image_latents) * temp
labels = torch.arange(b, device = device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss
# main Text2Punks class
class Text2Punks(nn.Module):
def __init__(
self,
*,
n_embd,
n_layer = 12,
n_head = 12,
d_head = 64,
num_text_tokens = 10000,
text_seq_len = 256,
num_image_tokens = 222,
image_seq_len = 576,
image_size = 24,
attn_pdrop = 0.1,
resid_pdrop = 0.1,
embd_pdrop = 0.1,
ff_dropout = 0.1,
attn_types = None,
loss_img_weight = 7,
loss_txt_weight = 7,
):
super().__init__()
num_text_tokens = num_text_tokens + text_seq_len # reserve unique padding tokens for each position (text seq len)
self.text_emb = nn.Embedding(num_text_tokens, n_embd)
self.image_emb = nn.Embedding(num_image_tokens, n_embd)
self.text_pos_emb = nn.Embedding(text_seq_len + 1, n_embd) # +1 for <bos> a.k.a <sos>
# self.image_pos_emb = nn.Embedding(image_seq_len, n_embd)
self.image_pos_emb = nn.Parameter(torch.zeros(1, image_seq_len, n_embd))
# self.image_pos_emb = AxialPositionalEmbedding(n_embd, axial_shape=(image_size, image_size))
self.num_text_tokens = num_text_tokens # for offsetting logits index and calculating cross entropy loss
self.num_image_tokens = num_image_tokens
self.text_seq_len = text_seq_len
self.image_seq_len = image_seq_len
seq_len = text_seq_len + image_seq_len
total_tokens = num_text_tokens + num_image_tokens
self.total_seq_len = seq_len
self.total_tokens = total_tokens
self.transformer = Transformer(
dim = n_embd,
causal = True,
seq_len = seq_len,
depth = n_layer,
heads = n_head,
dim_head = d_head,
attn_dropout = attn_pdrop,
resid_dropout = resid_pdrop,
embd_dropout = embd_pdrop,
ff_dropout = ff_dropout,
attn_types = attn_types,
image_size = image_size,
)
self.to_logits = nn.Sequential(
nn.LayerNorm(n_embd),
nn.Linear(n_embd, self.total_tokens),
)
seq_range = torch.arange(seq_len)
logits_range = torch.arange(total_tokens)
seq_range = rearrange(seq_range, 'n -> () n ()')
logits_range = rearrange(logits_range, 'd -> () () d')
logits_mask = (
((seq_range >= text_seq_len) & (logits_range < num_text_tokens)) |
((seq_range < text_seq_len) & (logits_range >= num_text_tokens))
)
self.register_buffer('logits_mask', logits_mask, persistent=False)
self.loss_img_weight = loss_img_weight
self.loss_txt_weight = loss_txt_weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@torch.no_grad()
@eval_decorator
def generate_images(
self,
text,
decoder,
*,
clip = None,
filter_thres = 0.5,
temperature = 1.,
img = None,
num_init_img_tokens = None
):
text_seq_len, image_seq_len, num_text_tokens = self.text_seq_len, self.image_seq_len, self.num_text_tokens
total_len = text_seq_len + image_seq_len
batch = text.shape[0]
text = text[:, :text_seq_len] # make sure text is within bounds
out = text
if exists(img):
assert img.shape[1] == image_seq_len, f'input image must have the correct image size {image_seq_len}'
num_img_tokens = default(num_init_img_tokens, int(0.4375 * image_seq_len)) # OpenAI used 14 * 32 initial tokens to prime
assert num_img_tokens < image_seq_len, 'number of initial image tokens for priming must be less than the total image token sequence length'
trunc_img = img[:, :num_img_tokens]
out = torch.cat((out, trunc_img), dim = -1)
for cur_len in range(out.shape[1], total_len):
is_image = cur_len >= text_seq_len
text, image = out[:, :text_seq_len], out[:, text_seq_len:]
logits = self(text, image)[:, -1, :]
filtered_logits = top_k(logits, thres = filter_thres)
probs = F.softmax(filtered_logits / temperature, dim = -1)
sample = torch.multinomial(probs, 1)
sample -= (num_text_tokens if is_image else 0) # offset sampled token if it is an image token, since logit space is composed of text and then image tokens
out = torch.cat((out, sample), dim=-1)
text_seq = out[:, :text_seq_len]
img_seq = out[:, -image_seq_len:]
scores = None
if exists(clip):
scores = clip(text_seq, img_seq, return_loss = False)
img_seq = repeat(img_seq, 'b p -> b p c', c=3)
decoder = repeat(decoder, 'p c -> b p c', b=batch)
images = torch.gather(decoder, 1, img_seq)
images = rearrange(images, 'b (h w) c-> b c h w', h=24, w =24)
images = images.float()
return images, scores
def forward(
self,
text,
image = None,
return_loss = False
):
assert text.shape[-1] == self.text_seq_len, f'the length {text.shape[-1]} of the text tokens you passed in does not have the correct length ({self.text_seq_len})'
device, total_seq_len = text.device, self.total_seq_len
text_range = torch.arange(self.text_seq_len, device = device) + (self.num_text_tokens - self.text_seq_len)
text = torch.where(text == 0, text_range, text)
text = F.pad(text, (1, 0), value = 0) # add <bos>
tokens = self.text_emb(text)
tokens += self.text_pos_emb(torch.arange(text.shape[1], device = device))
seq_len = tokens.shape[1]
image_len = image.shape[1]
image_emb = self.image_emb(image)
# image_emb += self.image_pos_emb(torch.arange(image_len, device = device))
image_emb += self.image_pos_emb[:, :image_len, :]
# image_emb += self.image_pos_emb(image_emb)
tokens = torch.cat((tokens, image_emb), dim = 1)
seq_len += image_len
# when training, if the length exceeds the total text + image length
# remove the last token, since it needs not to be trained
if tokens.shape[1] > total_seq_len:
seq_len -= 1
tokens = tokens[:, :-1]
out = self.transformer(tokens)
logits = self.to_logits(out)
# mask logits to make sure text predicts text (except last token), and image predicts image
logits_mask = self.logits_mask[:, :seq_len]
max_neg_value = -torch.finfo(logits.dtype).max
logits.masked_fill_(logits_mask, max_neg_value)
if not return_loss:
return logits
assert exists(image), 'when training, image must be supplied'
offsetted_image = image + self.num_text_tokens
labels = torch.cat((text[:, 1:], offsetted_image), dim = 1)
logits = rearrange(logits, 'b n c -> b c n')
loss_text = F.cross_entropy(logits[:, :, :self.text_seq_len], labels[:, :self.text_seq_len])
loss_img = F.cross_entropy(logits[:, :, self.text_seq_len:], labels[:, self.text_seq_len:])
loss = (self.loss_txt_weight * loss_text + self.loss_img_weight * loss_img) / (self.loss_img_weight + self.loss_txt_weight)
return loss, loss_text, loss_img
|