File size: 5,588 Bytes
b41a54a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat

# helpers

def exists(val):
    return val is not None

def max_neg_value(t):
    return -torch.finfo(t.dtype).max


# classes

class Attention(nn.Module):
    def __init__(self, dim, seq_len, causal = True, heads = 8, dim_head = 64, attn_dropout = 0., resid_dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        self.heads = heads
        self.seq_len = seq_len
        self.scale = dim_head ** -0.5

        self.causal = causal
        self.attn_drop = nn.Dropout(attn_dropout)

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(resid_dropout)
        )

    def forward(self, x):
        h, device = self.heads, x.device

        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)

        q = q * self.scale

        dots = torch.einsum('b h i d, b h j d -> b h i j', q, k)
        mask_value = max_neg_value(dots)

        if self.causal:
            i, j = dots.shape[-2:]
            mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool()
            dots.masked_fill_(mask, mask_value)

        attn = torch.softmax(dots, dim=-1)
        attn = self.attn_drop(attn)

        out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out =  self.to_out(out)
        return out


# sparse axial causal attention

class SparseAxialCausalAttention(nn.Module):
    def __init__(self, dim, seq_len, image_size = 32, axis = 0, heads = 8, dim_head = 64, attn_dropout = 0., resid_dropout = 0.):
        super().__init__()
        assert axis in {0, 1}, 'axis must be either 0 (along height) or 1 (along width)'
        self.axis = axis

        inner_dim = dim_head *  heads
        self.seq_len = seq_len
        self.heads = heads
        self.scale = dim_head ** -0.5
        self.image_size = image_size
        self.attn_drop = nn.Dropout(attn_dropout)

        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(resid_dropout)
        )

    def forward(self, x):
        b, n, _, h, img_size, axis, seq_len, device = *x.shape, self.heads, self.image_size, self.axis, self.seq_len, x.device

        img_seq_len = img_size ** 2
        text_len = seq_len + 1 - img_seq_len

        # padding

        padding = seq_len - n + 1
        mask = torch.ones(b, text_len, device = device).bool()

        x = F.pad(x, (0, 0, 0, padding), value = 0)
        mask = mask[:, :text_len]

        # derive queries / keys / values

        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), qkv)

        # print(self.scale)
        q = q * self.scale

        ((q_text, q_img), (k_text, k_img), (v_text, v_img)) = map(lambda t: (t[:, :-img_seq_len], t[:, -img_seq_len:]), (q, k, v))

        # text attention

        dots_text = einsum('b i d, b j d -> b i j', q_text, k_text)
        mask_value = max_neg_value(dots_text)

        i, j = dots_text.shape[-2:]
        text_causal_mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool()
        dots_text.masked_fill_(text_causal_mask, mask_value)

        attn_text = torch.softmax(dots_text, dim = -1)

        # attention dropout

        attn_text = self.attn_drop(attn_text)
        out_text = einsum('b i j, b j d -> b i d', attn_text, v_text)

        # image attention

        split_axis_einops = 'b (h w) c -> b h w c' if axis == 0 else 'b (h w) c -> b w h c'
        merge_axis_einops = 'b x n d -> b (x n) d' if axis == 0 else 'b x n d -> b (n x) d'

        # split out axis

        q_img, k_img, v_img = map(lambda t: rearrange(t, split_axis_einops, h = img_size), (q_img, k_img, v_img))

        # similarity

        dots_image_to_image = einsum('b x i d, b x j d -> b x i j', q_img, k_img)
        dots_image_to_text = einsum('b x i d, b j d -> b x i j', q_img, k_text)

        dots = torch.cat((dots_image_to_text, dots_image_to_image), dim = -1)

        # mask so image has full attention to text, but causal along axis

        bh, x, i, j = dots.shape
        causal_mask = torch.ones(i, img_size, device = device).triu_(img_size - i + 1).bool()
        causal_mask = repeat(causal_mask, 'i j -> b x i j', b = bh, x = x)

        mask = repeat(mask, 'b j -> (b h) x i j', h = h, x = x, i = i)
        mask = torch.cat((~mask, causal_mask), dim = -1)

        dots.masked_fill_(mask, mask_value)

        # attention.

        attn = torch.softmax(dots, dim = -1)

        # attention dropout

        attn = self.attn_drop(attn)

        # aggregate

        attn_image_to_text, attn_image_to_image = attn[..., :text_len], attn[..., text_len:]

        out_image_to_image = einsum('b x i j, b x j d -> b x i d', attn_image_to_image, v_img)
        out_image_to_text = einsum('b x i j, b j d -> b x i d', attn_image_to_text, v_text)

        out_image = out_image_to_image + out_image_to_text

        # merge back axis

        out_image = rearrange(out_image, merge_axis_einops, x = img_size)

        # combine attended values for both text and image

        out = torch.cat((out_text, out_image), dim = 1)

        out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
        out =  self.to_out(out)
        return out[:, :n]