Spaces:
Runtime error
Runtime error
import asyncio | |
import copy | |
import os | |
from dataclasses import asdict, dataclass | |
from datetime import datetime, timedelta | |
from json import JSONDecodeError | |
from typing import Any, Dict, List, Optional, Union | |
import gradio as gr | |
import httpx | |
import orjson | |
from cashews import NOT_NONE, cache | |
from httpx import AsyncClient | |
from huggingface_hub import hf_hub_url, logging | |
from huggingface_hub.utils import disable_progress_bars | |
from rich import print | |
from tqdm.auto import tqdm | |
from httpx import Client | |
from datetime import datetime, timedelta | |
cache.setup( | |
"mem://" | |
) | |
disable_progress_bars() | |
logging.set_verbosity_error() | |
token = os.getenv("HF_TOKEN") | |
headers = {"authorization": f"Bearer {token}"} | |
async def get_model_labels(model, client): | |
try: | |
url = hf_hub_url(repo_id=model, filename="config.json") | |
resp = await client.get(url, timeout=2) | |
return list(resp.json()["label2id"].keys()) | |
except (KeyError, JSONDecodeError, AttributeError): | |
return None | |
async def _try_load_model_card(hub_id, client=None): | |
if not client: | |
client = AsyncClient(headers=headers) | |
try: | |
url = hf_hub_url( | |
repo_id=hub_id, filename="README.md" | |
) # We grab card this way rather than via client library to improve performance | |
resp = await client.get(url) | |
if resp.status_code == 200: | |
card_text = resp.text | |
length = len(card_text) | |
elif resp.status_code == 404: | |
card_text = None | |
length = 0 | |
except httpx.ConnectError: | |
card_text = None | |
length = None | |
return card_text, length | |
def _try_parse_card_data(hub_json_data): | |
data = {} | |
keys = ["license", "language", "datasets"] | |
for key in keys: | |
if card_data := hub_json_data.get("cardData"): | |
try: | |
data[key] = card_data.get(key) | |
except (KeyError, AttributeError): | |
data[key] = None | |
else: | |
data[key] = None | |
return data | |
class ModelMetadata: | |
hub_id: str | |
tags: Optional[List[str]] | |
license: Optional[str] | |
library_name: Optional[str] | |
datasets: Optional[List[str]] | |
pipeline_tag: Optional[str] | |
labels: Optional[List[str]] | |
languages: Optional[Union[str, List[str]]] | |
model_card_text: Optional[str] = None | |
model_card_length: Optional[int] = None | |
likes: Optional[int] = None | |
downloads: Optional[int] = None | |
created_at: Optional[datetime] = None | |
async def from_hub(cls, hub_id, client=None): | |
try: | |
if not client: | |
client = httpx.AsyncClient() | |
url = f"https://huggingface.co./api/models/{hub_id}" | |
resp = await client.get(url) | |
hub_json_data = resp.json() | |
card_text, length = await _try_load_model_card(hub_id) | |
data = _try_parse_card_data(hub_json_data) | |
library_name = hub_json_data.get("library_name") | |
pipeline_tag = hub_json_data.get("pipeline_tag") | |
downloads = hub_json_data.get("downloads") | |
likes = hub_json_data.get("likes") | |
tags = hub_json_data.get("tags") | |
labels = await get_model_labels(hub_id, client) | |
return ModelMetadata( | |
hub_id=hub_id, | |
languages=data["language"], | |
tags=tags, | |
license=data["license"], | |
library_name=library_name, | |
datasets=data["datasets"], | |
pipeline_tag=pipeline_tag, | |
labels=labels, | |
model_card_text=card_text, | |
downloads=downloads, | |
likes=likes, | |
model_card_length=length, | |
) | |
except Exception as e: | |
print(f"Failed to create ModelMetadata for model {hub_id}: {str(e)}") | |
return None | |
COMMON_SCORES = { | |
"license": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You have not added a license to your models metadata" | |
), | |
}, | |
"datasets": { | |
"required": False, | |
"score": 1, | |
"missing_recommendation": ( | |
"You have not added any datasets to your models metadata" | |
), | |
}, | |
"model_card_text": { | |
"required": True, | |
"score": 3, | |
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co./HUB_ID/edit/main/README.md)""", | |
}, | |
"tags": { | |
"required": False, | |
"score": 2, | |
"missing_recommendation": ( | |
"You don't have any tags defined in your model metadata. Tags can help" | |
" people find relevant models on the Hub. You can create for your model by" | |
" clicking [here](https://huggingface.co./HUB_ID/edit/main/README.md)" | |
), | |
}, | |
} | |
TASK_TYPES_WITH_LANGUAGES = { | |
"text-classification", | |
"token-classification", | |
"table-question-answering", | |
"question-answering", | |
"zero-shot-classification", | |
"translation", | |
"summarization", | |
"text-generation", | |
"text2text-generation", | |
"fill-mask", | |
"sentence-similarity", | |
"text-to-speech", | |
"automatic-speech-recognition", | |
"text-to-image", | |
"image-to-text", | |
"visual-question-answering", | |
"document-question-answering", | |
} | |
LABELS_REQUIRED_TASKS = { | |
"text-classification", | |
"token-classification", | |
"object-detection", | |
"audio-classification", | |
"image-classification", | |
"tabular-classification", | |
} | |
ALL_PIPELINES = { | |
"audio-classification", | |
"audio-to-audio", | |
"automatic-speech-recognition", | |
"conversational", | |
"depth-estimation", | |
"document-question-answering", | |
"feature-extraction", | |
"fill-mask", | |
"graph-ml", | |
"image-classification", | |
"image-segmentation", | |
"image-to-image", | |
"image-to-text", | |
"object-detection", | |
"question-answering", | |
"reinforcement-learning", | |
"robotics", | |
"sentence-similarity", | |
"summarization", | |
"table-question-answering", | |
"tabular-classification", | |
"tabular-regression", | |
"text-classification", | |
"text-generation", | |
"text-to-image", | |
"text-to-speech", | |
"text-to-video", | |
"text2text-generation", | |
"token-classification", | |
"translation", | |
"unconditional-image-generation", | |
"video-classification", | |
"visual-question-answering", | |
"voice-activity-detection", | |
"zero-shot-classification", | |
"zero-shot-image-classification", | |
} | |
def generate_task_scores_dict(): | |
task_scores = {} | |
for task in ALL_PIPELINES: | |
task_dict = copy.deepcopy(COMMON_SCORES) | |
if task in TASK_TYPES_WITH_LANGUAGES: | |
task_dict = { | |
**task_dict, | |
**{ | |
"languages": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You haven't defined any languages in your metadata. This" | |
f" is usually recommend for {task} task" | |
), | |
} | |
}, | |
} | |
if task in LABELS_REQUIRED_TASKS: | |
task_dict = { | |
**task_dict, | |
**{ | |
"labels": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You haven't defined any labels in the config.json file" | |
f" these are usually recommended for {task}" | |
), | |
} | |
}, | |
} | |
max_score = sum(value["score"] for value in task_dict.values()) | |
task_dict["_max_score"] = max_score | |
task_scores[task] = task_dict | |
return task_scores | |
def generate_common_scores(): | |
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES) | |
GENERIC_SCORES["_max_score"] = sum( | |
value["score"] for value in GENERIC_SCORES.values() | |
) | |
return GENERIC_SCORES | |
SCORES = generate_task_scores_dict() | |
GENERIC_SCORES = generate_common_scores() | |
def _basic_check(data: Optional[ModelMetadata]): | |
score = 0 | |
if data is None: | |
return None | |
hub_id = data.hub_id | |
to_fix = {} | |
if task := data.pipeline_tag: | |
task_scores = SCORES[task] | |
data_dict = asdict(data) | |
for k, v in task_scores.items(): | |
if k.startswith("_"): | |
continue | |
if data_dict[k] is None: | |
to_fix[k] = task_scores[k]["missing_recommendation"].replace( | |
"HUB_ID", hub_id | |
) | |
if data_dict[k] is not None: | |
score += v["score"] | |
max_score = task_scores["_max_score"] | |
score = score / max_score | |
( | |
f"Your model's metadata score is {round(score*100)}% based on suggested" | |
f" metadata for {task}. \n" | |
) | |
if to_fix: | |
recommendations = ( | |
"Here are some suggestions to improve your model's metadata for" | |
f" {task}: \n" | |
) | |
for v in to_fix.values(): | |
recommendations += f"\n- {v}" | |
data_dict["recommendations"] = recommendations | |
data_dict["score"] = score * 100 | |
else: | |
data_dict = asdict(data) | |
for k, v in GENERIC_SCORES.items(): | |
if k.startswith("_"): | |
continue | |
if data_dict[k] is None: | |
to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace( | |
"HUB_ID", hub_id | |
) | |
if data_dict[k] is not None: | |
score += v["score"] | |
score = score / GENERIC_SCORES["_max_score"] | |
data_dict["score"] = max( | |
0, (score / 2) * 100 | |
) # TODO currently setting a manual penalty for not having a task | |
return orjson.dumps(data_dict) | |
def basic_check(hub_id): | |
return _basic_check(hub_id) | |
def create_query_url(query, skip=0): | |
return f"https://huggingface.co./api/search/full-text?q={query}&limit=100&skip={skip}&type=model" | |
def get_results(query,sync_client=None) -> Dict[Any, Any]: | |
if not sync_client: | |
sync_client = Client(http2=True, headers=headers) | |
url = create_query_url(query) | |
r = sync_client.get(url) | |
return r.json() | |
def parse_single_result(result): | |
name, filename = result["name"], result["fileName"] | |
search_result_file_url = hf_hub_url(name, filename) | |
repo_hub_url = f"https://huggingface.co./{name}" | |
return { | |
"name": name, | |
"search_result_file_url": search_result_file_url, | |
"repo_hub_url": repo_hub_url, | |
} | |
async def get_hub_models(results, client=None): | |
parsed_results = [parse_single_result(result) for result in results] | |
if not client: | |
client = AsyncClient(http2=True, headers=headers) | |
model_ids = [result["name"] for result in parsed_results] | |
model_objs = [ModelMetadata.from_hub(model, client=client) for model in model_ids] | |
models = await asyncio.gather(*model_objs) | |
results = [] | |
for result, model in zip(parsed_results, models): | |
score = _basic_check(model) | |
# print(f"score for {model} is {score}") | |
if score is not None: | |
score = orjson.loads(score) | |
result["metadata_score"] = score["score"] | |
result["model_card_length"] = score["model_card_length"] | |
result["is_licensed"] = (bool(score["license"]),) | |
results.append(result) | |
else: | |
results.append(None) | |
return results | |
def filter_for_license(results): | |
for result in results: | |
if result["is_licensed"]: | |
yield result | |
def filter_for_min_model_card_length(results, min_model_card_length): | |
for result in results: | |
if result["model_card_length"] > min_model_card_length: | |
yield result | |
def filter_search_results( | |
results: List[Dict[Any, Any]], | |
min_score=None, | |
min_model_card_length=None, | |
): # TODO make code more intuitive | |
# TODO setup filters as separate functions and chain results | |
results = asyncio.run(get_hub_models(results)) | |
for i, parsed_result in tqdm(enumerate(results)): | |
# parsed_result = parse_single_result(result) | |
if parsed_result is None: | |
continue | |
if ( | |
min_score is None | |
and min_model_card_length is not None | |
and parsed_result["model_card_length"] > min_model_card_length | |
or min_score is None | |
and min_model_card_length is None | |
): | |
parsed_result["original_position"] = i | |
yield parsed_result | |
elif min_score is not None: | |
if parsed_result["metadata_score"] <= min_score: | |
continue | |
if ( | |
min_model_card_length is not None | |
and parsed_result["model_card_length"] > min_model_card_length | |
or min_model_card_length is None | |
): | |
parsed_result["original_position"] = i | |
yield parsed_result | |
def sort_search_results( | |
filtered_search_results, | |
first_sort_key="metadata_score", | |
second_sort_key="original_position", # TODO expose these in results | |
): | |
return sorted( | |
list(filtered_search_results), | |
key=lambda x: (x[first_sort_key], x[second_sort_key]), | |
reverse=True, | |
) | |
def find_context(text, query, window_size): | |
# Split the text into words | |
words = text.split() | |
# Find the index of the query token | |
try: | |
index = words.index(query) | |
# Get the start and end indices of the context window | |
start = max(0, index - window_size) | |
end = min(len(words), index + window_size + 1) | |
return " ".join(words[start:end]) | |
except ValueError: | |
return " ".join(words[:window_size]) | |
def create_markdown(results): # TODO move to separate file | |
rows = [] | |
for result in results: | |
row = f"""# [{result['name']}]({result['repo_hub_url']}) | |
| Metadata Quality Score | Model card length | Licensed | | |
|------------------------|-------------------|----------| | |
| {result['metadata_score']:.0f}% | {result['model_card_length']} | {"✅" if result['is_licensed'] else "❌"} | | |
\n | |
*{result['text']}* | |
<hr> | |
\n""" | |
rows.append(row) | |
return "\n".join(rows) | |
async def get_result_card_snippet(result, query=None, client=None): | |
if not client: | |
client = AsyncClient(http2=True, headers=headers) | |
try: | |
resp = await client.get(result["search_result_file_url"]) | |
result_text = resp.text | |
result["text"] = find_context(result_text, query, 100) | |
except httpx.ConnectError: | |
result["text"] = "Could not load model card" | |
return result | |
async def get_result_card_snippets(results, query=None, client=None): | |
if not client: | |
client = AsyncClient(http2=True, headers=headers) | |
result_snippets = [ | |
get_result_card_snippet(result, query=query, client=client) | |
for result in results | |
] | |
results = await asyncio.gather(*result_snippets) | |
return results | |
sync_client = Client(http2=True, headers=headers) | |
def _search_hub( | |
query: str, | |
min_score: Optional[int] = None, | |
min_model_card_length: Optional[int] = None, | |
): | |
results = get_results(query, sync_client) | |
print(f"Found {len(results['hits'])} results") | |
results = results["hits"] | |
number_original_results = len(results) | |
filtered_results = filter_search_results( | |
results, min_score=min_score, min_model_card_length=min_model_card_length | |
) | |
filtered_results = sort_search_results(filtered_results) | |
final_results = asyncio.run(get_result_card_snippets(filtered_results, query=query)) | |
percent_of_original = round( | |
len(final_results) / number_original_results * 100, ndigits=0 | |
) | |
filtered_vs_og = f""" | |
| Number of original results | Number of results after filtering | Percentage of results after filtering | | |
| -------------------------- | --------------------------------- | -------------------------------------------- | | |
| {number_original_results} | {len(final_results)} | {percent_of_original}% | | |
""" | |
return filtered_vs_og, create_markdown(final_results) | |
def search_hub(query: str, min_score=None, min_model_card_length=None): | |
return _search_hub(query, min_score, min_model_card_length) | |
with gr.Blocks() as demo: | |
with gr.Tab("Hub Search with metadata quality filter"): | |
gr.Markdown("# 🤗 Hub model search with metadata quality filters") | |
gr.Markdown( | |
"""This search tool relies on the full-text search API. | |
Your search is passed to this API and the returned models are assessed for metadata quality. See the next tab in the app for more info on how this is calculated. | |
If you don't specify any minimum requirements you will get back your results with metadata quality info | |
for each result. The results are ordered by: | |
- Metadata quality i.e. a model with 80% metadata quality will rank higher than one with 75% | |
- Original search order i.e. if two models have the same metadata quality the one that appeared first in the original search will rank higher. | |
If there is interest in this app I will expose more options for filtering and sorting results. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
query = gr.Textbox("x-ray", label="Search query") | |
with gr.Column(): | |
button = gr.Button("Search") | |
with gr.Row(): | |
# literal_search = gr.Checkbox(False, label="Literal_search") | |
# TODO add option for exact matching i.e. phrase matching | |
# gr.Checkbox(False, label="Must have license?") | |
mim_model_card_length = gr.Number( | |
None, label="Minimum model card length" | |
) | |
min_metadata_score = gr.Slider(0, label="Minimum metadata score") | |
filter_results = gr.Markdown("Filter results vs original search") | |
results_markdown = gr.Markdown("Search results") | |
button.click( | |
search_hub, | |
[query, min_metadata_score, mim_model_card_length], | |
[filter_results, results_markdown], | |
) | |
# with gr.Tab("Scoring metadata quality"): | |
# with gr.Row(): | |
# gr.Markdown( | |
# f""" | |
# # Metadata quality scoring | |
# ``` | |
# {COMMON_SCORES} | |
# ``` | |
# For example, `TASK_TYPES_WITH_LANGUAGES` defines all the tasks for which it | |
# is expected to have language metadata associated with the model. | |
# ``` | |
# {TASK_TYPES_WITH_LANGUAGES} | |
# ``` | |
# """ | |
# ) | |
demo.launch() | |
# with gr.Blocks() as demo: | |
# gr.Markdown( | |
# """ | |
# # Model Metadata Checker | |
# This app will check your model's metadata for a few common issues.""" | |
# ) | |
# with gr.Row(): | |
# text = gr.Text(label="Model ID") | |
# button = gr.Button(label="Check", type="submit") | |
# with gr.Row(): | |
# gr.Markdown("Results") | |
# markdown = gr.JSON() | |
# button.click(_basic_check, text, markdown) | |
# demo.queue(concurrency_count=32) | |
# demo.launch() | |
# gr.Interface(fn=basic_check, inputs="text", outputs="markdown").launch(debug=True) | |