Spaces:
Runtime error
Runtime error
File size: 24,968 Bytes
5cc903d fd1a723 09af587 1771fc5 104a4ce 1771fc5 cd41390 104a4ce fd1a723 cd41390 1771fc5 83e8286 ca267e1 cd41390 5cc903d 09af587 cd41390 5cc903d 1771fc5 213c06e 5f6ba44 cd41390 213c06e 104a4ce 1a2a726 104a4ce 7048d93 5cc903d 104a4ce 5cc903d 104a4ce 816049c 5cc903d 104a4ce fd1a723 5cc903d ca267e1 104a4ce cd41390 816049c 5cc903d 104a4ce 5cc903d 104a4ce 5cc903d 104a4ce cd41390 104a4ce 5cc903d 104a4ce cd41390 5cc903d ca267e1 5cc903d 104a4ce 816049c 104a4ce 9f4bace 104a4ce 09af587 104a4ce cd41390 104a4ce fd1a723 104a4ce 0b8ef86 104a4ce cd41390 fd1a723 104a4ce 9f4bace fd1a723 5db5b18 cd41390 5cc903d fd1a723 5cc903d fd1a723 104a4ce fd1a723 31639f7 fd1a723 104a4ce 816049c c9bf28d 6307f82 816049c 9f4bace 6307f82 fd1a723 cd41390 5cc903d fd1a723 5cc903d fd1a723 5cc903d 8b71d33 fd1a723 8b71d33 fd1a723 1771fc5 5cc903d fd1a723 5cc903d fd1a723 8b71d33 1771fc5 8b71d33 fd1a723 1771fc5 fd1a723 104a4ce fd1a723 8b71d33 fd1a723 cd41390 5cc903d fd1a723 5cc903d fd1a723 cd41390 5cc903d cd41390 5cc903d cd41390 fd1a723 5cc903d fd1a723 a6c5938 fd1a723 5cc903d fd1a723 9e76504 a87de4c 6eb3779 a87de4c 1771fc5 a87de4c 7e73f81 6b8032e 7e73f81 a87de4c 1771fc5 12c25aa b378dc4 12c25aa 1771fc5 12c25aa 3d56068 12c25aa a87de4c 3d56068 a87de4c 7076c22 a87de4c 12c25aa 816049c 09af587 816049c 09af587 7048d93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
import asyncio
import copy
import json
import os
from dataclasses import asdict, dataclass
from datetime import datetime, timedelta
from functools import lru_cache
from json import JSONDecodeError
from typing import Any, Dict, List, Optional, Union
import gradio as gr
import httpx
import orjson
from cachetools import TTLCache, cached
from cashews import NOT_NONE, cache
from dotenv import load_dotenv
from httpx import AsyncClient, Client
from huggingface_hub import hf_hub_url, logging
from huggingface_hub.utils import disable_progress_bars
from rich import print
from tqdm.auto import tqdm
load_dotenv() # take environment variables from .env.
CACHE_EXPIRY_TIME = timedelta(hours=3)
sync_cache = TTLCache(maxsize=200_000, ttl=CACHE_EXPIRY_TIME, timer=datetime.now)
cache.setup("mem://")
disable_progress_bars()
logging.set_verbosity_error()
if token := os.getenv("HF_TOKEN"):
headers = {"authorization": f"Bearer {token}"}
else:
raise EnvironmentError("No token found")
async def get_model_labels(model, client):
try:
url = hf_hub_url(repo_id=model, filename="config.json")
resp = await client.get(url, timeout=2)
return list(resp.json()["label2id"].keys())
except (KeyError, JSONDecodeError, AttributeError):
return None
def get_model_labels_sync(model, client=None):
if not client:
client = Client(headers=headers)
try:
url = hf_hub_url(repo_id=model, filename="config.json")
resp = client.get(url, timeout=2)
return list(resp.json()["label2id"].keys())
except (KeyError, JSONDecodeError, AttributeError):
return None
async def _try_load_model_card(hub_id, client=None):
if not client:
client = AsyncClient(headers=headers)
try:
url = hf_hub_url(
repo_id=hub_id, filename="README.md"
) # We grab card this way rather than via client library to improve performance
resp = await client.get(url)
if resp.status_code == 200:
card_text = resp.text
length = len(card_text)
elif resp.status_code == 404:
card_text = None
length = 0
except httpx.ConnectError:
card_text = None
length = None
return card_text, length
def _try_load_model_card_sync(hub_id, client=None):
if not client:
client = Client(headers=headers)
try:
url = hf_hub_url(
repo_id=hub_id, filename="README.md"
) # We grab card this way rather than via client library to improve performance
resp = client.get(url)
if resp.status_code == 200:
card_text = resp.text
length = len(card_text)
elif resp.status_code == 404:
card_text = None
length = 0
except httpx.ConnectError:
card_text = None
length = None
return card_text, length
def _try_parse_card_data(hub_json_data):
data = {}
keys = ["license", "language", "datasets"]
for key in keys:
if card_data := hub_json_data.get("cardData"):
try:
data[key] = card_data.get(key)
except (KeyError, AttributeError):
data[key] = None
else:
data[key] = None
return data
@dataclass(eq=False)
class ModelMetadata:
hub_id: str
tags: Optional[List[str]]
license: Optional[str]
library_name: Optional[str]
datasets: Optional[List[str]]
pipeline_tag: Optional[str]
labels: Optional[List[str]]
languages: Optional[Union[str, List[str]]]
model_card_text: Optional[str] = None
model_card_length: Optional[int] = None
likes: Optional[int] = None
downloads: Optional[int] = None
created_at: Optional[datetime] = None
@classmethod
@cache(ttl=CACHE_EXPIRY_TIME, condition=NOT_NONE)
async def from_hub(cls, hub_id, client=None):
try:
if not client:
client = httpx.AsyncClient()
url = f"https://huggingface.co./api/models/{hub_id}"
resp = await client.get(url)
hub_json_data = resp.json()
card_text, length = await _try_load_model_card(hub_id)
data = _try_parse_card_data(hub_json_data)
library_name = hub_json_data.get("library_name")
pipeline_tag = hub_json_data.get("pipeline_tag")
downloads = hub_json_data.get("downloads")
likes = hub_json_data.get("likes")
tags = hub_json_data.get("tags")
labels = await get_model_labels(hub_id, client)
return ModelMetadata(
hub_id=hub_id,
languages=data["language"],
tags=tags,
license=data["license"],
library_name=library_name,
datasets=data["datasets"],
pipeline_tag=pipeline_tag,
labels=labels,
model_card_text=card_text,
downloads=downloads,
likes=likes,
model_card_length=length,
)
except Exception as e:
print(f"Failed to create ModelMetadata for model {hub_id}: {str(e)}")
return None
@dataclass(eq=False)
class ModelMetadataSync:
hub_id: str
tags: Optional[List[str]]
license: Optional[str]
library_name: Optional[str]
datasets: Optional[List[str]]
pipeline_tag: Optional[str]
labels: Optional[List[str]]
languages: Optional[Union[str, List[str]]]
model_card_text: Optional[str] = None
model_card_length: Optional[int] = None
likes: Optional[int] = None
downloads: Optional[int] = None
created_at: Optional[datetime] = None
@classmethod
def from_hub(cls, hub_id, client=None):
try:
if not client:
client = httpx.Client(headers=headers)
url = f"https://huggingface.co./api/models/{hub_id}"
resp = client.get(url)
hub_json_data = resp.json()
card_text, length = _try_load_model_card_sync(hub_id)
data = _try_parse_card_data(hub_json_data)
library_name = hub_json_data.get("library_name")
pipeline_tag = hub_json_data.get("pipeline_tag")
downloads = hub_json_data.get("downloads")
likes = hub_json_data.get("likes")
tags = hub_json_data.get("tags")
labels = get_model_labels_sync(hub_id, client)
return ModelMetadata(
hub_id=hub_id,
languages=data["language"],
tags=tags,
license=data["license"],
library_name=library_name,
datasets=data["datasets"],
pipeline_tag=pipeline_tag,
labels=labels,
model_card_text=card_text,
downloads=downloads,
likes=likes,
model_card_length=length,
)
except Exception as e:
print(f"Failed to create ModelMetadata for model {hub_id}: {str(e)}")
return None
COMMON_SCORES = {
"license": {
"required": True,
"score": 2,
"missing_recommendation": (
"You have not added a license to your models metadata"
),
},
"datasets": {
"required": False,
"score": 1,
"missing_recommendation": (
"You have not added any datasets to your models metadata"
),
},
"model_card_text": {
"required": True,
"score": 3,
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co./HUB_ID/edit/main/README.md)""",
},
"tags": {
"required": False,
"score": 2,
"missing_recommendation": (
"You don't have any tags defined in your model metadata. Tags can help"
" people find relevant models on the Hub. You can create for your model by"
" clicking [here](https://huggingface.co./HUB_ID/edit/main/README.md)"
),
},
}
TASK_TYPES_WITH_LANGUAGES = {
"text-classification",
"token-classification",
"table-question-answering",
"question-answering",
"zero-shot-classification",
"translation",
"summarization",
"text-generation",
"text2text-generation",
"fill-mask",
"sentence-similarity",
"text-to-speech",
"automatic-speech-recognition",
"text-to-image",
"image-to-text",
"visual-question-answering",
"document-question-answering",
}
LABELS_REQUIRED_TASKS = {
"text-classification",
"token-classification",
"object-detection",
"audio-classification",
"image-classification",
"tabular-classification",
}
ALL_PIPELINES = {
"audio-classification",
"audio-to-audio",
"automatic-speech-recognition",
"conversational",
"depth-estimation",
"document-question-answering",
"feature-extraction",
"fill-mask",
"graph-ml",
"image-classification",
"image-segmentation",
"image-to-image",
"image-to-text",
"object-detection",
"question-answering",
"reinforcement-learning",
"robotics",
"sentence-similarity",
"summarization",
"table-question-answering",
"tabular-classification",
"tabular-regression",
"text-classification",
"text-generation",
"text-to-image",
"text-to-speech",
"text-to-video",
"text2text-generation",
"token-classification",
"translation",
"unconditional-image-generation",
"video-classification",
"visual-question-answering",
"voice-activity-detection",
"zero-shot-classification",
"zero-shot-image-classification",
}
formatted_scores = "\n"
for k, v in COMMON_SCORES.items():
formatted_scores += f"{k}:{v}" + "\n"
@lru_cache()
def generate_task_scores_dict():
task_scores = {}
for task in ALL_PIPELINES:
task_dict = copy.deepcopy(COMMON_SCORES)
if task in TASK_TYPES_WITH_LANGUAGES:
task_dict = {
**task_dict,
**{
"languages": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any languages in your metadata. This"
f" is usually recommend for {task} task"
),
}
},
}
if task in LABELS_REQUIRED_TASKS:
task_dict = {
**task_dict,
**{
"labels": {
"required": True,
"score": 2,
"missing_recommendation": (
"You haven't defined any labels in the config.json file"
f" these are usually recommended for {task}"
),
}
},
}
max_score = sum(value["score"] for value in task_dict.values())
task_dict["_max_score"] = max_score
task_scores[task] = task_dict
return task_scores
@lru_cache()
def generate_common_scores():
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES)
GENERIC_SCORES["_max_score"] = sum(
value["score"] for value in GENERIC_SCORES.values()
)
return GENERIC_SCORES
SCORES = generate_task_scores_dict()
GENERIC_SCORES = generate_common_scores()
@cached(sync_cache)
def _basic_check(data: Optional[ModelMetadata]):
score = 0
if data is None:
return None
hub_id = data.hub_id
to_fix = {}
if task := data.pipeline_tag:
task_scores = SCORES[task]
data_dict = asdict(data)
for k, v in task_scores.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = task_scores[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
max_score = task_scores["_max_score"]
score = score / max_score
(
f"Your model's metadata score is {round(score*100)}% based on suggested"
f" metadata for {task}. \n"
)
if to_fix:
recommendations = (
"Here are some suggestions to improve your model's metadata for"
f" {task}: \n"
)
for v in to_fix.values():
recommendations += f"\n- {v}"
data_dict["recommendations"] = recommendations
data_dict["score"] = score * 100
else:
data_dict = asdict(data)
for k, v in GENERIC_SCORES.items():
if k.startswith("_"):
continue
if data_dict[k] is None:
to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace(
"HUB_ID", hub_id
)
if data_dict[k] is not None:
score += v["score"]
score = score / GENERIC_SCORES["_max_score"]
data_dict["score"] = max(
0, (score / 2) * 100
) # TODO currently setting a manual penalty for not having a task
return orjson.dumps(data_dict)
def basic_check(hub_id): # add types
return _basic_check(hub_id)
@cached(sync_cache)
def basic_check_from_hub_id(hub_id):
model_data = ModelMetadataSync.from_hub(hub_id)
return orjson.loads(basic_check(model_data))
def create_query_url(query, skip=0):
return f"https://huggingface.co./api/search/full-text?q={query}&limit=100&skip={skip}&type=model"
def get_results(query, sync_client=None) -> Dict[Any, Any]:
if not sync_client:
sync_client = Client(http2=True, headers=headers)
url = create_query_url(query)
r = sync_client.get(url)
return r.json()
def parse_single_result(result):
name, filename = result["name"], result["fileName"]
search_result_file_url = hf_hub_url(name, filename)
repo_hub_url = f"https://huggingface.co./{name}"
return {
"name": name,
"search_result_file_url": search_result_file_url,
"repo_hub_url": repo_hub_url,
}
@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
async def get_hub_models(results, client=None):
parsed_results = [parse_single_result(result) for result in results]
if not client:
client = AsyncClient(http2=True, headers=headers)
model_ids = [result["name"] for result in parsed_results]
model_objs = [ModelMetadata.from_hub(model, client=client) for model in model_ids]
models = await asyncio.gather(*model_objs)
results = []
for result, model in zip(parsed_results, models):
score = _basic_check(model)
# print(f"score for {model} is {score}")
if score is not None:
score = orjson.loads(score)
result["metadata_score"] = score["score"]
result["model_card_length"] = score["model_card_length"]
result["is_licensed"] = (bool(score["license"]),)
results.append(result)
else:
results.append(None)
return results
def filter_for_license(results):
for result in results:
if result["is_licensed"]:
yield result
def filter_for_min_model_card_length(results, min_model_card_length):
for result in results:
if result["model_card_length"] > min_model_card_length:
yield result
def filter_search_results(
results: List[Dict[Any, Any]],
min_score=None,
min_model_card_length=None,
): # TODO make code more intuitive
# TODO setup filters as separate functions and chain results
results = asyncio.run(get_hub_models(results))
for i, parsed_result in tqdm(enumerate(results)):
# parsed_result = parse_single_result(result)
if parsed_result is None:
continue
if (
min_score is None
and min_model_card_length is not None
and parsed_result["model_card_length"] > min_model_card_length
or min_score is None
and min_model_card_length is None
):
parsed_result["original_position"] = i
yield parsed_result
elif min_score is not None:
if parsed_result["metadata_score"] <= min_score:
continue
if (
min_model_card_length is not None
and parsed_result["model_card_length"] > min_model_card_length
or min_model_card_length is None
):
parsed_result["original_position"] = i
yield parsed_result
def sort_search_results(
filtered_search_results,
first_sort_key="metadata_score",
second_sort_key="original_position", # TODO expose these in results
):
return sorted(
list(filtered_search_results),
key=lambda x: (x[first_sort_key], x[second_sort_key]),
reverse=True,
)
def find_context(text, query, window_size):
# Split the text into words
words = text.split()
# Find the index of the query token
try:
index = words.index(query)
# Get the start and end indices of the context window
start = max(0, index - window_size)
end = min(len(words), index + window_size + 1)
return " ".join(words[start:end])
except ValueError:
return " ".join(words[:window_size])
def create_markdown(results): # TODO move to separate file
rows = []
for result in results:
row = f"""# [{result['name']}]({result['repo_hub_url']})
| Metadata Quality Score | Model card length | Licensed |
|------------------------|-------------------|----------|
| {result['metadata_score']:.0f}% | {result['model_card_length']} | {"✅" if result['is_licensed'] else "❌"} |
\n
*{result['text']}*
<hr>
\n"""
rows.append(row)
return "\n".join(rows)
async def get_result_card_snippet(result, query=None, client=None):
if not client:
client = AsyncClient(http2=True, headers=headers)
try:
resp = await client.get(result["search_result_file_url"])
result_text = resp.text
result["text"] = find_context(result_text, query, 100)
except httpx.ConnectError:
result["text"] = "Could not load model card"
return result
@cache(ttl=timedelta(hours=3), condition=NOT_NONE)
async def get_result_card_snippets(results, query=None, client=None):
if not client:
client = AsyncClient(http2=True, headers=headers)
result_snippets = [
get_result_card_snippet(result, query=query, client=client)
for result in results
]
results = await asyncio.gather(*result_snippets)
return results
sync_client = Client(http2=True, headers=headers)
def _search_hub(
query: str,
min_score: Optional[int] = None,
min_model_card_length: Optional[int] = None,
):
results = get_results(query, sync_client)
print(f"Found {len(results['hits'])} results")
results = results["hits"]
number_original_results = len(results)
filtered_results = filter_search_results(
results, min_score=min_score, min_model_card_length=min_model_card_length
)
filtered_results = sort_search_results(filtered_results)
final_results = asyncio.run(get_result_card_snippets(filtered_results, query=query))
percent_of_original = round(
len(final_results) / number_original_results * 100, ndigits=0
)
filtered_vs_og = f"""
| Number of original results | Number of results after filtering | Percentage of results after filtering |
| -------------------------- | --------------------------------- | -------------------------------------------- |
| {number_original_results} | {len(final_results)} | {percent_of_original}% |
"""
return filtered_vs_og, create_markdown(final_results)
def search_hub(query: str, min_score=None, min_model_card_length=None):
return _search_hub(query, min_score, min_model_card_length)
with gr.Blocks() as demo:
with gr.Tab("Search"):
gr.HTML(
"""
<h1 style="text-align: center;"> 🔍 MetaRefine 🔍 </h1>
<p style="text-align: center;">✨ <em> Refine Hub model search results by metadata quality.</em> ✨</p>
"""
)
gr.Markdown(
"""This app enables you to perform full-text searches on the Hugging Face Hub for machine learning models.
You can search by keyword or phrase and filter results by metadata quality.
Optionally, you can set a minimum model card length or metadata quality score to refine your results.
Models are ranked based on metadata quality, with higher scores receiving priority.
In case of equal scores, the original search order determines the ranking.
More filtering and sorting options may be added based on user interest!
If you have feedback please [open an issue](https://huggingface.co./spaces/librarian-bots/MetaRefine/discussions/new) in the community tab!
"""
)
with gr.Row():
with gr.Column():
query = gr.Textbox("historic", label="Search query")
with gr.Column():
button = gr.Button("Search")
with gr.Row():
# literal_search = gr.Checkbox(False, label="Literal_search")
# TODO add option for exact matching i.e. phrase matching
# gr.Checkbox(False, label="Must have license?")
mim_model_card_length = gr.Number(
100,
label="Minimum model card length (words)",
)
min_metadata_score = gr.Slider(
0, 100, 50, label="Minimum metadata score (%)"
)
# gr.Markdown("## Search results")
filter_results = gr.Markdown()
results_markdown = gr.Markdown()
button.click(
search_hub,
[query, min_metadata_score, mim_model_card_length],
[filter_results, results_markdown],
)
with gr.Tab("Metadata quality details)"):
with gr.Row():
gr.Markdown(
"""# How metadata quality is scored?
The current approach to metadata scoring is based on checking if a particular piece of metadata is present or not i.e. is a dataset specified in the mode's metadata or not?
For each metadata field a score between 1 and 3 is given if that feature is present or not. These scores are based on the relative importance of the metadata field.
We do this on a task specific basis for models where a `pipeline_tag` exists.
For each task the scores achieved are compared to the maximum possible score for that field."""
)
with gr.Row():
gr.Markdown(
"""
### Common Scores
We start with some 'common scores'. These common scores are for fields which should be present for any model i.e. they are not specific to a particular task."""
)
with gr.Accordion(label="Common scores dictionary"):
gr.JSON(json.dumps(COMMON_SCORES))
with gr.Row():
gr.Markdown(
"""# Task specific scoring.
We also define task specific scores for the following model task types. This allows are scoring to reflect the fact that different tasks have different metadata requirements. For example, the following set includes all tasks for which a language should be specified."""
)
with gr.Row():
markdown_formatted_languages = "".join(
"-" + " " + task + "\n" for task in TASK_TYPES_WITH_LANGUAGES
)
gr.Markdown(markdown_formatted_languages)
with gr.Row():
gr.Markdown(
"""#### Text classification example
Below you can see the example scoring dictionary for text-classification models."""
)
with gr.Accordion(label="Text classification dictionary"):
text_class_scores_example = SCORES["text-classification"]
gr.Json(json.dumps(text_class_scores_example))
with gr.Accordion(label="Full overview of all scores", open=False):
gr.Json(json.dumps(SCORES))
with gr.Tab("Score models"):
model_id_to_score = gr.Textbox(
placeholder="bert-base-uncased", label="Model ID"
)
score_model = gr.Button("Score model")
score_model.click(basic_check_from_hub_id, model_id_to_score, [gr.Json()])
demo.launch()
|