|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The Trainer class, to easily train a π€ Transformers from scratch or finetune it on a new task. |
|
""" |
|
import os |
|
from typing import Optional |
|
from transformers import Trainer |
|
|
|
import torch |
|
from transformers.modeling_utils import PreTrainedModel, unwrap_model |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
WEIGHTS_NAME = "pytorch_model.bin" |
|
TRAINING_ARGS_NAME = "training_args.bin" |
|
|
|
|
|
class PrefixTrainer(Trainer): |
|
def __init__(self, *args, save_changed=False, **kwargs): |
|
self.save_changed = save_changed |
|
super().__init__(*args, **kwargs) |
|
|
|
def _save(self, output_dir: Optional[str] = None, state_dict=None): |
|
|
|
output_dir = output_dir if output_dir is not None else self.args.output_dir |
|
os.makedirs(output_dir, exist_ok=True) |
|
logger.info(f"Saving model checkpoint to {output_dir}") |
|
|
|
|
|
if not isinstance(self.model, PreTrainedModel): |
|
if isinstance(unwrap_model(self.model), PreTrainedModel): |
|
if state_dict is None: |
|
state_dict = self.model.state_dict() |
|
unwrap_model(self.model).save_pretrained(output_dir, state_dict=state_dict) |
|
else: |
|
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.") |
|
if state_dict is None: |
|
state_dict = self.model.state_dict() |
|
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) |
|
else: |
|
if self.save_changed: |
|
print("Saving PrefixEncoder") |
|
state_dict = self.model.state_dict() |
|
filtered_state_dict = {} |
|
for k, v in self.model.named_parameters(): |
|
if v.requires_grad: |
|
filtered_state_dict[k] = state_dict[k] |
|
self.model.save_pretrained(output_dir, state_dict=filtered_state_dict) |
|
else: |
|
print("Saving the whole model") |
|
self.model.save_pretrained(output_dir, state_dict=state_dict) |
|
if self.tokenizer is not None: |
|
self.tokenizer.save_pretrained(output_dir) |
|
|
|
|
|
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME)) |
|
|