IDMR-demo / app.py
liubangwei
fix bug
45123ea
import gradio as gr
import os
from PIL import Image
import numpy as np
import torch
import pickle
from transformers import AutoProcessor
from src.model import MMEBModel
from src.arguments import ModelArguments
QUERY_DIR = "imgs/queries"
IMAGE_DIR = "imgs/candidates"
image_paths = [os.path.join(IMAGE_DIR, f) for f in os.listdir(IMAGE_DIR) if f.endswith((".jpg", ".png"))]
global IMAGE_TOKEN, TOP_N
IMAGE_TOKEN = "<|image_1|>"
TOP_N = 5
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device: {device}")
def load_model():
global IMAGE_TOKEN
model_args = ModelArguments(
# model_name="/fs-computility/ai-shen/kilab-shared/liubangwei/ckpt/my_hf/IDMR-2B",
model_name="lbw18601752667/IDMR-2B",
model_backbone="internvl_2_5",
)
if model_args.model_backbone == "phi35v":
processor = AutoProcessor.from_pretrained(
model_args.model_name,
trust_remote_code=True,
num_crops=model_args.num_crops,
)
processor.tokenizer.padding_side = "right"
elif model_args.model_backbone == "internvl_2_5":
from src.vlm_backbone.intern_vl import InternVLProcessor
from transformers import AutoTokenizer, AutoImageProcessor
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name,
trust_remote_code=True
)
image_processor = AutoImageProcessor.from_pretrained(
model_args.model_name,
trust_remote_code=True,
use_fast=False
)
processor = InternVLProcessor(
image_processor=image_processor,
tokenizer=tokenizer
)
IMAGE_TOKEN = "<image>"
model = MMEBModel.load(model_args)
model = model.to(device, dtype=torch.bfloat16)
model.eval()
return model, processor
model, processor = load_model()
def get_inputs(processor, text, image_path=None, image=None):
if image_path:
image = Image.open(image_path)
if image is None:
text = text.replace(IMAGE_TOKEN, "")
inputs = processor(
text=text,
images=[image] if image else None,
return_tensors="pt",
max_length=1024,
truncation=True
)
inputs = {key: value.to(device) for key, value in inputs.items()}
inputs["image_flags"] = torch.tensor([1 if image else 0], dtype=torch.long).to(device)
if image is None:
del inputs['pixel_values']
return inputs
def encode_image_library(image_paths):
embeddings_dict = {}
for img_path in image_paths:
text = f"{IMAGE_TOKEN}\n Represent the given image."
print(f"text: {text}")
inputs = get_inputs(processor, text, image_path=img_path)
with torch.no_grad(), torch.autocast(device_type=device, dtype=torch.bfloat16):
output = model(tgt=inputs)
img_name = os.path.basename(img_path)
embeddings_dict[img_name] = output["tgt_reps"].float().cpu().numpy()
return embeddings_dict
def save_embeddings(embeddings, file_path="image_embeddings.pkl"):
with open(file_path, "wb") as f:
pickle.dump(embeddings, f)
def load_embeddings(file_path="image_embeddings.pkl"):
with open(file_path, "rb") as f:
return pickle.load(f)
def cosine_similarity(query_embedding, embeddings):
similarity = np.sum(query_embedding * embeddings, axis=-1)
return similarity
def retrieve_images(query_text, query_image, top_n=TOP_N):
if query_text:
query_text = f"{IMAGE_TOKEN}\n {query_text}"
else:
query_text = f"{IMAGE_TOKEN}\n Represent the given image."
if query_image is not None:
image = Image.fromarray(query_image)
else:
image = None
inputs = get_inputs(processor, query_text, image=image)
print(f"inputs: {inputs}")
with torch.no_grad(), torch.autocast(device_type=device, dtype=torch.bfloat16):
query_embedding = model(qry=inputs)["qry_reps"].float().cpu().numpy()
embeddings_dict = load_embeddings()
img_names = []
embeddings = []
for img_name in os.listdir(IMAGE_DIR):
if img_name in embeddings_dict:
img_names.append(img_name)
embeddings.append(embeddings_dict[img_name])
embeddings = np.stack(embeddings)
similarity = cosine_similarity(query_embedding, embeddings)
similarity = similarity.T
print(f"cosine_similarity: {similarity}")
top_indices = np.argsort(-similarity).squeeze(0)[:top_n]
print(f"top_indices: {top_indices}")
return [os.path.join(IMAGE_DIR, img_names[i]) for i in top_indices]
def demo(query_text, query_image):
# print(f"query_text: {query_text}, query_image: {query_image}, type(query_image): {type(query_image)}, image shape: {query_image.shape if query_image is not None else 'None'}")
retrieved_images = retrieve_images(query_text, query_image)
return [Image.open(img) for img in retrieved_images]
def load_examples():
examples = []
image_files = [f for f in os.listdir(QUERY_DIR) if f.endswith((".jpg", ".png"))]
for img_file in image_files:
img_path = os.path.join(QUERY_DIR, img_file)
txt_file = os.path.splitext(img_file)[0] + ".txt"
txt_path = os.path.join(QUERY_DIR, txt_file)
if os.path.exists(txt_path):
with open(txt_path, 'r', encoding='utf-8') as f:
query_text = f.read().strip().replace("<|image_1|>\n", "")
examples.append([query_text, img_path])
return examples
iface = gr.Interface(
fn=demo,
inputs=[
gr.Textbox(placeholder="Enter your query text here...", label="Query Text"),
gr.Image(label="Query Image", type="numpy")
],
outputs=gr.Gallery(label=f"Retrieved Images (Top {TOP_N})", columns=3),
examples=load_examples(),
title="Instance-Driven Multi-modal Retrieval (IDMR) Demo",
description="Enter a query text or upload an image to retrieve relevant images from the library. You can click on the examples below to try them out."
)
if not os.path.exists("image_embeddings.pkl"):
embeddings = encode_image_library(image_paths)
save_embeddings(embeddings)
iface.launch()