Spaces:
Sleeping
Sleeping
File size: 16,624 Bytes
a72a7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
from typing import List, Union, Callable, Any, Dict
from contextlib import nullcontext
from itertools import repeat
from collections import UserDict
import logging
import torch
from torch import nn, Tensor
from torch.cuda.amp import GradScaler, autocast
from grad_cache.context_managers import RandContext
from src.model.biencoder import BiEncoder
from utils import dist_utils
logger = logging.getLogger(__name__)
def is_binary_tensor(tensor):
unique_elements = torch.unique(tensor)
return torch.equal(unique_elements, torch.tensor([0, 1], dtype=tensor.dtype).to(unique_elements.device))
class BiEncoderGradCache(nn.Module):
"""
Gradient Cache class. Implements input chunking, first graph-less forward pass, Gradient Cache creation, second
forward & backward gradient computation. Optimizer step is not included. Native torch automatic mixed precision is
supported. User needs to handle gradient unscaling and scaler update after a gradeitn cache step.
"""
def __init__(
self,
models: List[nn.Module],
chunk_sizes: Union[int, List[int]],
loss_fns,
split_input_fn: Callable[[Any, int], Any] = None,
get_rep_fn: Callable[..., Tensor] = None,
fp16_or_bf16: bool = False,
dtype=torch.float32,
scaler: GradScaler = None,
):
"""
Initialize the Gradient Cache class instance.
:param models: A list of all encoder models to be updated by the current cache.
:param chunk_sizes: An integer indicating chunk size. Or a list of integers of chunk size for each model.
:param loss_fns: A dict of loss functions that takes arbitrary numbers of representation tensors and
arbitrary numbers of keyword arguments as input. It should not in any case modify the input tensors' relations
in the autograd graph, which are later relied upon to create the gradient cache.
:param split_input_fn: An optional function that split generic model input into chunks. If not provided, this
class will try its best to split the inputs of supported types. See `split_inputs` function.
:param get_rep_fn: An optional function that takes generic model output and return representation tensors. If
not provided, the generic output is assumed to be the representation tensor.
:param fp16_or_bf16: If True, run mixed precision training, which requires scaler to also be set.
:param scaler: A GradScaler object for automatic mixed precision training.
"""
super(BiEncoderGradCache, self).__init__()
self.models = models
self.q_encoder = models[0]
self.k_encoder = models[1]
if isinstance(chunk_sizes, int):
self.chunk_sizes = [chunk_sizes for _ in range(len(models))]
else:
self.chunk_sizes = chunk_sizes
self.split_input_fn = split_input_fn
self.get_rep_fn = get_rep_fn
self.loss_fns = loss_fns
self.fp16_or_bf16 = fp16_or_bf16
self.dtype = dtype
self.scaler = scaler
self._get_input_tensors_strict = False
def __call__(self, *args, **kwargs):
"""
Call the cache_step function.
:return: Current step loss.
"""
return self.cache_step(*args, **kwargs)
def split_inputs(self, model_input, chunk_size: int) -> List:
"""
Split input into chunks. Will call user provided `split_input_fn` if specified. Otherwise,
it can handle input types of tensor, list of tensors and dictionary of tensors.
:param model_input: Generic pytorch input.
:param chunk_size: Size of each chunk.
:return: A list of chunked pytorch input.
"""
# delegate splitting to user provided function
if self.split_input_fn is not None:
return self.split_input_fn(model_input, chunk_size)
if isinstance(model_input, (dict, UserDict)) and all(isinstance(x, Tensor) for x in model_input.values()):
keys = list(model_input.keys())
chunked_tensors = [model_input[k].split(chunk_size, dim=0) for k in keys]
return [dict(zip(kk, tt)) for kk, tt in zip(repeat(keys), zip(*chunked_tensors))]
elif isinstance(model_input, list) and all(isinstance(x, Tensor) for x in model_input):
chunked_x = [t.split(chunk_size, dim=0) for t in model_input]
return [list(s) for s in zip(*chunked_x)]
elif isinstance(model_input, Tensor):
return list(model_input.split(chunk_size, dim=0))
elif isinstance(model_input, tuple) and list(map(type, model_input)) == [list, dict]:
args_chunks = self.split_inputs(model_input[0], chunk_size)
kwargs_chunks = self.split_inputs(model_input[1], chunk_size)
return list(zip(args_chunks, kwargs_chunks))
else:
raise NotImplementedError(f'Model input split not implemented for type {type(model_input)}')
def get_input_tensors(self, model_input) -> List[Tensor]:
"""
Recursively go through model input and grab all tensors, which are then used to record current device random
states. This method will do its best to parse types of Tensor, tuple, list, dict and UserDict. Other types will
be ignored unless self._get_input_tensors_strict is set to True, in which case an exception will be raised.
:param model_input: input to model
:return: all torch tensors in model_input
"""
if isinstance(model_input, Tensor):
return [model_input]
elif isinstance(model_input, (list, tuple)):
return sum((self.get_input_tensors(x) for x in model_input), [])
elif isinstance(model_input, (dict, UserDict)):
return sum((self.get_input_tensors(x) for x in model_input.values()), [])
elif self._get_input_tensors_strict:
raise NotImplementedError(f'get_input_tensors not implemented for type {type(model_input)}')
else:
return []
def model_call(self, model: nn.Module, model_input):
"""
Literally call the model's __call__ method.
:param model: model to be called
:param model_input: input to the model call
:return: model output
"""
with autocast('cuda', dtype=self.dtype) if self.fp16_or_bf16 else nullcontext():
if isinstance(model_input, Tensor):
return model(model_input)
elif isinstance(model_input, list):
return model(*model_input)
elif isinstance(model_input, (dict, UserDict)):
return model(**model_input)
elif isinstance(model_input, tuple) and list(map(type, model_input)) == [list, dict]:
model_args, model_kwargs = model_input
return model(*model_args, **model_kwargs)
elif isinstance(model_input, tuple):
return model(*model_input)
else:
raise NotImplementedError
def get_reps(self, model_out) -> Tensor:
"""
Return representation tensor from generic model output
:param model_out: generic model output
:return: a single tensor corresponding to the model representation output
"""
if self.get_rep_fn is not None:
return self.get_rep_fn(model_out)
else:
return model_out
def compute_loss(self, loss_mapping=None, *reps: Tensor, **loss_kwargs) -> Tensor:
"""
Compute the loss based on the representation tensors. The tensors should be ordered same as the list of models
registered in this GradCache class instance.
:param reps: Representations for computing the loss.
reps[0]: query vector, shape=[B,H]
reps[1]: doc vector, shape=[B*num_neg,H]
:param loss_kwargs: Keyword arguments input to the loss function.
:return: the loss tensor.
"""
if loss_mapping is None:
loss_fn = self.loss_fns["distributed_inbatch_contrastive"]
loss, loss_details = loss_fn(*reps, **loss_kwargs)
else:
# print('start to compute loss')
bsz, hdim = reps[0].shape
loss, loss_details = 0.0, {}
preds = torch.zeros(bsz * dist_utils.get_world_size(), dtype=torch.long, device=reps[0].device)
labels = torch.zeros(bsz * dist_utils.get_world_size(), dtype=torch.long, device=reps[0].device)
for loss_name, data_idxs in loss_mapping.items():
# print("get loss_name, data_indxs", loss_name, data_idxs)
data_idxs = torch.tensor(data_idxs).to(reps[0].device)
q = reps[0].index_select(0, index=data_idxs)
if len(reps[1].shape) == 1 or is_binary_tensor(reps[1]):
# in cases d is one-hot label for classification loss
d = reps[1]
else:
d = reps[1].view(bsz, -1, hdim).index_select(0, index=data_idxs)
d = d.view(-1, hdim)
# print_rank(f"loss_name={loss_name}, q.shape={q.shape}, d.shape={d.shape}")
_loss, _loss_details = self.loss_fns[loss_name](q, d, **loss_kwargs)
loss += _loss
# print("finish loss fns")
if "labels" in _loss_details:
# since we compute losses per group/loss-type (stored in loss_mapping), so the data is reordered by group and we need to gather preds/labels
if torch.distributed.is_initialized():
data_idxs = data_idxs + bsz * dist_utils.get_rank()
# print('start to gather data index')
data_idxs = dist_utils.dist_gather(data_idxs)
# print('finish gather the data index')
# TODO, this might not work correctly for classification loss
preds.index_copy_(0, data_idxs, _loss_details["preds"])
labels.index_copy_(0, data_idxs, _loss_details["labels"])
loss_details["preds"] = preds
loss_details["labels"] = labels
# print('finish loss', data_idxs)
# print('finish to compute_loss')
return loss, loss_details
def forward_no_grad(
self,
model: nn.Module,
model_inputs,
) -> [Tensor, List[RandContext]]:
"""
The first forward pass without gradient computation.
:param model: Encoder model.
:param model_inputs: Model input already broken into chunks. A tuple of two lists (ids, masks)
:return: A tuple of a) representations and b) recorded random states.
"""
rnd_states = []
model_reps = []
with torch.no_grad():
for x in zip(*model_inputs):
rnd_states.append(RandContext(*self.get_input_tensors(x)))
y = self.model_call(model, x)
model_reps.append(self.get_reps(y))
# concatenate all sub-batch representations
model_reps = torch.cat(model_reps, dim=0)
return model_reps, rnd_states
def build_cache(self, deepspeed=None, loss_mapping=None, *reps: Tensor, **loss_kwargs) -> [List[Tensor], Tensor]:
"""
Compute the gradient cache
:param reps: Computed representations from all encoder models
:param loss_kwargs: Extra keyword arguments to the loss function
:return: A tuple of a) gradient cache for each encoder model, and b) loss tensor
"""
new_reps = []
for r in reps:
if isinstance(r, torch.Tensor) and r.ndim == 2:
new_reps.append(r.detach().requires_grad_())
elif isinstance(r, list):
new_reps.append(torch.cat(r, dim=0))
# reps = [r.detach().requires_grad_() for r in reps]
reps = tuple(new_reps)
with autocast(dtype=self.dtype) if self.fp16_or_bf16 else nullcontext():
loss, loss_details = self.compute_loss(loss_mapping, *reps, **loss_kwargs)
if deepspeed is None:
if self.scaler:
self.scaler.scale(loss).backward()
else:
loss.backward()
else:
deepspeed.backward(loss)
cache = [r.grad for r in reps if len(r.shape) > 1 and not is_binary_tensor(r[0])]
return cache, loss.detach(), loss_details
def forward_backward(
self,
model: nn.Module,
model_inputs,
cached_gradients: List[Tensor],
random_states: List[RandContext],
no_sync_except_last: bool = False,
deepspeed = None,
):
"""
Run the second forward and the backward pass to compute gradient for a model.
:param model: Encoder model.
:param model_inputs: Chunked input to the encoder model.
:param cached_gradients: Chunked gradient cache tensor for each input.
:param random_states: Each input's device random state during the first forward.
:param no_sync_except_last: If True, under distributed setup, only trigger gradient reduction across processes
for the last sub-batch's forward-backward pass.
"""
if no_sync_except_last and deepspeed is None:
sync_contexts = [model.no_sync for _ in range(len(model_inputs) - 1)] + [nullcontext]
else:
sync_contexts = [nullcontext for _ in range(len(model_inputs))]
for x, state, gradient, sync_context in zip(model_inputs, random_states, cached_gradients, sync_contexts):
with sync_context():
with state:
y = self.model_call(model, x)
reps = self.get_reps(y)
surrogate = torch.dot(reps.flatten(), gradient.flatten())
if deepspeed is None:
surrogate.backward()
else:
deepspeed.backward(surrogate)
def cache_step(
self,
inputs,
masks,
no_sync_except_last: bool = False,
deepspeed: object = None,
loss_mapping = None,
**loss_kwargs
) -> Tensor:
"""
Run a cached step to compute gradient over the inputs.
:param model_inputs: Input to each encoder model. Should be in similar order as the class's model.
:param no_sync_except_last: If True, under distributed setup, for each model, only trigger gradient reduction
across processes for the last sub-batch's forward-backward pass.
:param loss_kwargs: Additional keyword arguments to the loss function.
:return: The current's loss.
"""
all_reps = []
all_rnd_states = []
inputs = [self.split_inputs(x, chunk_size) for x, chunk_size in zip(inputs, self.chunk_sizes)]
masks = [self.split_inputs(x, chunk_size) for x, chunk_size in zip(masks, self.chunk_sizes)]
for model, input, mask in zip(self.models, inputs, masks):
if len(input[0].shape) == 1 or is_binary_tensor(input[0]):
# input is label
all_reps.append(input)
all_rnd_states.append(input)
else:
model_reps, rnd_states = self.forward_no_grad(model, model_inputs=(input, mask))
all_reps.append(model_reps)
all_rnd_states.append(rnd_states)
# print('start to build cache')
cache, loss, loss_details = self.build_cache(deepspeed, loss_mapping, *all_reps, **loss_kwargs)
cache = [c.split(chunk_size) for c, chunk_size in zip(cache, self.chunk_sizes)]
for model, input, mask, model_cache, rnd_states in zip(self.models, inputs, masks, cache, all_rnd_states):
self.forward_backward(model, model_inputs=list(zip(input, mask)),
cached_gradients=model_cache, random_states=rnd_states,
no_sync_except_last=no_sync_except_last,
deepspeed=deepspeed,
)
# print('finish forward backward')
log_stats = BiEncoder._report_train_metrics(q=all_reps[0], k=all_reps[1],
preds=loss_details["preds"], labels=loss_details["labels"],
loss_details=loss_details)
return loss, log_stats
|