import streamlit as st
import torch
from transformers import RobertaTokenizer, T5ForConditionalGeneration
import pickle
import os
import time
from torch.serialization import safe_globals, add_safe_globals
add_safe_globals([
"transformers.models.t5.modeling_t5.T5ForConditionalGeneration"
])
# Set page configuration
st.set_page_config(
page_title="CodeT5 Query Generator",
page_icon="🤖",
layout="wide",
)
# CSS styling
st.markdown("""
""", unsafe_allow_html=True)
# App header
st.markdown("
Network Query Generator
", unsafe_allow_html=True)
st.markdown("", unsafe_allow_html=True)
# Sidebar for model information and settings
with st.sidebar:
st.title("About")
st.info("This app uses a fine-tuned CodeT5 model to generate specialized queries from natural language questions.")
st.title("Model Settings")
max_length = st.slider("Maximum output length", 32, 256, 128)
num_beams = st.slider("Number of beams", 1, 10, 4)
temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
st.title("Model Info")
st.markdown("**Base model:** Salesforce/codet5-small")
st.markdown("**Fine-tuned on:** Custom dataset")
MODEL_PATH = "finetuned_codet5_small_01.pkl"
# Function to load the model
@st.cache_resource
def load_model(file_path):
"""Load the tokenizer and model using a safe approach"""
model_name = "Salesforce/codet5-small"
tokenizer = RobertaTokenizer.from_pretrained(model_name)
try:
with safe_globals(["transformers.models.t5.modeling_t5.T5ForConditionalGeneration"]):
model = torch.load(file_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
return tokenizer, model, device, None
except Exception as e:
try:
# Initialize base model
base_model = T5ForConditionalGeneration.from_pretrained(model_name)
# Load state dict
with safe_globals(["transformers.models.t5.modeling_t5.T5ForConditionalGeneration"]):
state_dict = torch.load(file_path, map_location="cpu")
# If the loaded object is already a model, extract just the state dict
if hasattr(state_dict, 'state_dict'):
state_dict = state_dict.state_dict()
# Load the state dict into the base model
base_model.load_state_dict(state_dict)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
base_model = base_model.to(device)
base_model.eval()
return tokenizer, base_model, device, None
except Exception as e2:
return None, None, None, f"Error loading model: {e2}"
# Function to generate query
def generate_query(question, tokenizer, model, device, max_length=128, num_beams=4, temperature=0.7):
"""Generate a query based on the user's question"""
inputs = tokenizer(question, return_tensors="pt", padding=True, truncation=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=max_length,
num_beams=num_beams,
temperature=temperature,
early_stopping=True
)
generated_query = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_query
# Load the model at startup
with st.spinner("Loading model... (this may take a moment)"):
tokenizer, model, device, error_message = load_model(MODEL_PATH)
if model is not None:
st.sidebar.success(f"Model loaded successfully!")
else:
st.sidebar.error(f"Failed to load model: {error_message}")
# Main app area
question = st.text_area("Enter your question here:", height=100, placeholder="Example: Show the total data transferred, grouped by user department and VPN type, excluding 'Guest' users, for VPN sessions that lasted longer than 2 hours")
# a button to generate the response
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
generate_button = st.button("Generate Query", use_container_width=True)
# Display generation result
if generate_button and question:
if model is not None and tokenizer is not None:
with st.spinner("Generating response..."):
# Add a slight delay for user experience
time.sleep(0.5)
response = generate_query(
question,
tokenizer,
model,
device,
max_length=max_length,
num_beams=num_beams,
temperature=temperature
)
st.markdown("", unsafe_allow_html=True)
st.markdown("### Generated Query:")
st.code(response, language="sql")
st.markdown("
", unsafe_allow_html=True)
else:
st.error("Model could not be loaded. Please check if the model file exists at the correct path.")
# Example questions
with st.expander("Example Questions"):
example_questions = [
"Show me the current configuration of the router.",
"Get the total number of ['firewall', 'router', 'switch', 'server', 'access_point'] with high CPU usage.",
"Get the total bandwidth usage of access_point FW1.",
"Get the total uptime of all ['firewall', 'router', 'switch', 'server', 'access_point'].",
"Get the total number of ['firewall', 'router', 'switch', 'server', 'access_point'].",
"Find the top 5 devices with the highest data usage, grouped by region and filtering for data usage greater than 10GB."
]
for i in range(len(example_questions)):
st.write(example_questions[i])
# Footer
st.markdown("", unsafe_allow_html=True)