lalitwale100 commited on
Commit
b7de90d
·
verified ·
1 Parent(s): 81a3320

Added app.py

Browse files
Files changed (1) hide show
  1. app.py +187 -0
app.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import RobertaTokenizer, T5ForConditionalGeneration
4
+ import pickle
5
+ import os
6
+ import time
7
+ from torch.serialization import safe_globals, add_safe_globals
8
+
9
+ add_safe_globals([
10
+ "transformers.models.t5.modeling_t5.T5ForConditionalGeneration"
11
+ ])
12
+
13
+ # Set page configuration
14
+ st.set_page_config(
15
+ page_title="CodeT5 Query Generator",
16
+ page_icon="🤖",
17
+ layout="wide",
18
+ )
19
+
20
+ # CSS styling
21
+ st.markdown("""
22
+ <style>
23
+ .main-header {
24
+ font-size: 2.5rem;
25
+ color: #4527A0;
26
+ text-align: center;
27
+ margin-bottom: 1rem;
28
+ }
29
+ .sub-header {
30
+ font-size: 1.5rem;
31
+ color: #5E35B1;
32
+ margin-bottom: 1rem;
33
+ }
34
+ .response-container {
35
+ background-color: #f0f2f6;
36
+ border-radius: 10px;
37
+ padding: 20px;
38
+ margin-top: 20px;
39
+ }
40
+ .stButton>button {
41
+ background-color: #673AB7;
42
+ color: white;
43
+ }
44
+ .stButton>button:hover {
45
+ background-color: #5E35B1;
46
+ color: white;
47
+ }
48
+ .footer {
49
+ text-align: center;
50
+ margin-top: 3rem;
51
+ color: #9575CD;
52
+ }
53
+ </style>
54
+ """, unsafe_allow_html=True)
55
+
56
+ # App header
57
+ st.markdown("<h1 class='main-header'>Network Query Generator</h1>", unsafe_allow_html=True)
58
+ st.markdown("<h2 class='sub-header'>Ask questions and get specialized network related queries</h2>", unsafe_allow_html=True)
59
+
60
+ # Sidebar for model information and settings
61
+ with st.sidebar:
62
+ st.title("About")
63
+ st.info("This app uses a fine-tuned CodeT5 model to generate specialized queries from natural language questions.")
64
+
65
+ st.title("Model Settings")
66
+ max_length = st.slider("Maximum output length", 32, 256, 128)
67
+ num_beams = st.slider("Number of beams", 1, 10, 4)
68
+ temperature = st.slider("Temperature", 0.0, 1.0, 0.7)
69
+
70
+ st.title("Model Info")
71
+ st.markdown("**Base model:** Salesforce/codet5-small")
72
+ st.markdown("**Fine-tuned on:** Custom dataset")
73
+
74
+ MODEL_PATH = "finetuned_codet5_small.pkl"
75
+
76
+ # Function to load the model
77
+ @st.cache_resource
78
+ def load_model(file_path):
79
+ """Load the tokenizer and model using a safe approach"""
80
+ model_name = "Salesforce/codet5-small"
81
+ tokenizer = RobertaTokenizer.from_pretrained(model_name)
82
+
83
+ try:
84
+ with safe_globals(["transformers.models.t5.modeling_t5.T5ForConditionalGeneration"]):
85
+ model = torch.load(file_path, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu"), weights_only=False)
86
+
87
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ model = model.to(device)
89
+ model.eval()
90
+ return tokenizer, model, device, None
91
+ except Exception as e:
92
+ try:
93
+ # Initialize base model
94
+ base_model = T5ForConditionalGeneration.from_pretrained(model_name)
95
+
96
+ # Load state dict
97
+ with safe_globals(["transformers.models.t5.modeling_t5.T5ForConditionalGeneration"]):
98
+ state_dict = torch.load(file_path, map_location="cpu")
99
+
100
+ # If the loaded object is already a model, extract just the state dict
101
+ if hasattr(state_dict, 'state_dict'):
102
+ state_dict = state_dict.state_dict()
103
+
104
+ # Load the state dict into the base model
105
+ base_model.load_state_dict(state_dict)
106
+
107
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
108
+ base_model = base_model.to(device)
109
+ base_model.eval()
110
+ return tokenizer, base_model, device, None
111
+ except Exception as e2:
112
+ return None, None, None, f"Error loading model: {e2}"
113
+
114
+ # Function to generate query
115
+ def generate_query(question, tokenizer, model, device, max_length=128, num_beams=4, temperature=0.7):
116
+ """Generate a query based on the user's question"""
117
+ inputs = tokenizer(question, return_tensors="pt", padding=True, truncation=True, max_length=128)
118
+ inputs = {k: v.to(device) for k, v in inputs.items()}
119
+
120
+ with torch.no_grad():
121
+ generated_ids = model.generate(
122
+ input_ids=inputs["input_ids"],
123
+ attention_mask=inputs["attention_mask"],
124
+ max_length=max_length,
125
+ num_beams=num_beams,
126
+ temperature=temperature,
127
+ early_stopping=True
128
+ )
129
+
130
+ generated_query = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
131
+ return generated_query
132
+
133
+ # Load the model at startup
134
+ with st.spinner("Loading model... (this may take a moment)"):
135
+ tokenizer, model, device, error_message = load_model(MODEL_PATH)
136
+
137
+ if model is not None:
138
+ st.sidebar.success(f"Model loaded successfully!")
139
+ else:
140
+ st.sidebar.error(f"Failed to load model: {error_message}")
141
+
142
+ # Main app area
143
+ question = st.text_area("Enter your question here:", height=100, placeholder="Example: How can I secure my network against DDoS attacks?")
144
+
145
+ # a button to generate the response
146
+ col1, col2, col3 = st.columns([1, 1, 1])
147
+ with col2:
148
+ generate_button = st.button("Generate Query", use_container_width=True)
149
+
150
+ # Display generation result
151
+ if generate_button and question:
152
+ if model is not None and tokenizer is not None:
153
+ with st.spinner("Generating response..."):
154
+ # Add a slight delay for user experience
155
+ time.sleep(0.5)
156
+ response = generate_query(
157
+ question,
158
+ tokenizer,
159
+ model,
160
+ device,
161
+ max_length=max_length,
162
+ num_beams=num_beams,
163
+ temperature=temperature
164
+ )
165
+
166
+ st.markdown("<div class='response-container'>", unsafe_allow_html=True)
167
+ st.markdown("### Generated Query:")
168
+ st.code(response, language="sql")
169
+ st.markdown("</div>", unsafe_allow_html=True)
170
+ else:
171
+ st.error("Model could not be loaded. Please check if the model file exists at the correct path.")
172
+
173
+ # Example questions
174
+ with st.expander("Example Questions"):
175
+ example_questions = [
176
+ "Show me the current configuration of the router.",
177
+ "Get the total number of ['firewall', 'router', 'switch', 'server', 'access_point'] with high CPU usage.",
178
+ "Get the total bandwidth usage of access_point FW1.",
179
+ "Get the total uptime of all ['firewall', 'router', 'switch', 'server', 'access_point'].",
180
+ "Get the total number of ['firewall', 'router', 'switch', 'server', 'access_point']."
181
+ ]
182
+
183
+ for i in range(len(example_questions)):
184
+ st.write(example_questions[i])
185
+
186
+ # Footer
187
+ st.markdown("<p class='footer'>Powered by CodeT5 - Fine-tuned for specialized queries</p>", unsafe_allow_html=True)