Spaces:
Sleeping
Sleeping
File size: 18,736 Bytes
c3279e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import sys
import torch
import torch.nn.functional as F
import numpy as np
from collections import defaultdict
np.set_printoptions(precision=4)
from scipy.stats import rankdata
"""Information Retrieval metrics
Useful Resources:
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt
http://www.nii.ac.jp/TechReports/05-014E.pdf
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf
Learning to Rank for Information Retrieval (Tie-Yan Liu)
"""
def mean_reciprocal_rank(rs):
"""Score is reciprocal of the rank of the first relevant item
First element is 'rank 1'. Relevance is binary (nonzero is relevant).
Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank
>>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]]
>>> mean_reciprocal_rank(rs)
0.61111111111111105
>>> rs = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]])
>>> mean_reciprocal_rank(rs)
0.5
>>> rs = [[0, 0, 0, 1], [1, 0, 0], [1, 0, 0]]
>>> mean_reciprocal_rank(rs)
0.75
Args:
rs: Iterator of relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Mean reciprocal rank
"""
rs = (np.asarray(r).nonzero()[0] for r in rs)
return np.mean([1. / (r[0] + 1) if r.size else 0. for r in rs])
def r_precision(r):
"""Score is precision after all relevant documents have been retrieved
Relevance is binary (nonzero is relevant).
>>> r = [0, 0, 1]
>>> r_precision(r)
0.33333333333333331
>>> r = [0, 1, 0]
>>> r_precision(r)
0.5
>>> r = [1, 0, 0]
>>> r_precision(r)
1.0
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
R Precision
"""
r = np.asarray(r) != 0
z = r.nonzero()[0]
if not z.size:
return 0.
return np.mean(r[:z[-1] + 1])
def precision_at_k(r, k):
"""Score is precision @ k
Relevance is binary (nonzero is relevant).
>>> r = [0, 0, 1]
>>> precision_at_k(r, 1)
0.0
>>> precision_at_k(r, 2)
0.0
>>> precision_at_k(r, 3)
0.33333333333333331
>>> precision_at_k(r, 4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: Relevance score length < k
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Precision @ k
Raises:
ValueError: len(r) must be >= k
"""
assert k >= 1
r = np.asarray(r)[:k] != 0
if r.size != k:
raise ValueError('Relevance score length < k')
return np.mean(r)
def average_precision(r):
"""Score is average precision (area under PR curve)
Relevance is binary (nonzero is relevant).
>>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1]
>>> delta_r = 1. / sum(r)
>>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y])
0.7833333333333333
>>> average_precision(r)
0.78333333333333333
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Average precision
"""
r = np.asarray(r) != 0
out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]]
if not out:
return 0.
return np.mean(out)
def mean_average_precision(rs):
"""Score is mean average precision
Relevance is binary (nonzero is relevant).
>>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]]
>>> mean_average_precision(rs)
0.78333333333333333
>>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1], [0]]
>>> mean_average_precision(rs)
0.39166666666666666
Args:
rs: Iterator of relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Mean average precision
"""
return np.mean([average_precision(r) for r in rs])
def dcg_at_k(r, k, method=0):
"""Score is discounted cumulative gain (dcg)
Relevance is positive real values. Can use binary
as the previous methods.
Example from
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
>>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0]
>>> dcg_at_k(r, 1)
3.0
>>> dcg_at_k(r, 1, method=1)
3.0
>>> dcg_at_k(r, 2)
5.0
>>> dcg_at_k(r, 2, method=1)
4.2618595071429155
>>> dcg_at_k(r, 10)
9.6051177391888114
>>> dcg_at_k(r, 11)
9.6051177391888114
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
k: Number of results to consider
method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...]
If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...]
Returns:
Discounted cumulative gain
"""
r = np.asfarray(r)[:k]
if r.size:
if method == 0:
return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1)))
elif method == 1:
return np.sum(r / np.log2(np.arange(2, r.size + 2)))
else:
raise ValueError('method must be 0 or 1.')
return 0.
def ndcg_at_k(r, k, method=0):
"""Score is normalized discounted cumulative gain (ndcg)
Relevance is positive real values. Can use binary
as the previous methods.
Example from
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
>>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0]
>>> ndcg_at_k(r, 1)
1.0
>>> r = [2, 1, 2, 0]
>>> ndcg_at_k(r, 4)
0.9203032077642922
>>> ndcg_at_k(r, 4, method=1)
0.96519546960144276
>>> ndcg_at_k([0], 1)
0.0
>>> ndcg_at_k([1], 2)
1.0
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
k: Number of results to consider
method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...]
If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...]
Returns:
Normalized discounted cumulative gain
"""
dcg_max = dcg_at_k(sorted(r, reverse=True), k, method)
if not dcg_max:
return 0.
return dcg_at_k(r, k, method) / dcg_max
"""
Wealth inequality
"""
def gini(arr):
## Gini = \frac{2\sum_i^n i\times y_i}{n\sum_i^n y_i} - \frac{n+1}{n}
sorted_arr = arr.copy()
sorted_arr.sort()
n = arr.size
coef_ = 2. / n
const_ = (n + 1.) / n
weighted_sum = sum([(i + 1) * yi for i, yi in enumerate(sorted_arr)])
return coef_ * weighted_sum / (sorted_arr.sum()) - const_
"""
Expected envy and inferiority under probabilistic recommendation as weighted sampling with replacement
"""
def expected_utility_u(Ru, ps, k):
return Ru @ ps * k
def expected_utility(R, Pi, k):
U = (R * Pi * k).sum(axis=1)
# if not agg:
return U
def expected_envy_u_v(Ru, pus, pvs, k):
return Ru @ (pvs - pus) * k
def prob_in(ps, k):
return 1 - (1 - ps) ** k
def prob_in_approx(ps, k):
return k * ps
def expected_inferiority_u_v(Ru, Rv, pus, pvs, k, compensate=False, approx=False):
differ = Rv - Ru
if not compensate:
differ = np.clip(differ, a_min=0, a_max=None)
if not approx:
return differ @ (prob_in(pus, k) * prob_in(pvs, k))
else:
return differ @ (prob_in_approx(pus, k) * prob_in_approx(pvs, k))
def expected_envy(R, Pi, k):
"""
Measure expected envy for k-sized recommendation according to rec strategy Pi with respect to relevancy scores R
:param R: m x n real-valued matrix
:param Pi: m x n Markov matrix
:return: E: m x n envy matrix where Euv = envy from u to v if not agg, sum of E if agg
"""
assert np.all(np.isclose(Pi.sum(axis=1), 1.)) or np.array_equal(Pi,
Pi.astype(bool)) # binary matrix for discrete rec
m, n = len(R), len(R[0])
E = np.zeros((m, m))
for u in range(m):
for v in range(m):
if v == u:
continue
E[u, v] = expected_envy_u_v(R[u], Pi[u], Pi[v], k=k)
E = np.clip(E, a_min=0., a_max=None)
# if not agg:
return E
def expected_inferiority(R, Pi, k, compensate=True, approx=False):
"""
Measure expected inferiority for k-sized recommendation according to rec strategy Pi with respect to relevancy scores R
:param R:
:param Pi:
:param k:
:param agg:
:return: I: m x n
"""
assert np.all(np.isclose(Pi.sum(axis=1), 1.)) or np.array_equal(Pi,
Pi.astype(bool)) # binary matrix for discrete rec
m, n = len(R), len(R[0])
I = np.zeros((m, m))
for u in range(m):
for v in range(m):
if v == u:
continue
I[u, v] = expected_inferiority_u_v(R[u], R[v], Pi[u], Pi[v], k=k, approx=approx, compensate=compensate)
I = np.clip(I, a_min=0., a_max=None)
# if not agg:
return I
def expected_envy_torch(R, Pi, k):
m, n = len(R), len(R[0])
E = torch.zeros(m, m)
for u in range(m):
for v in range(m):
if v == u:
continue
E[u, v] = expected_envy_u_v(R[u], Pi[u], Pi[v], k=k)
E = torch.clamp(E, min=0.)
return E
def expected_envy_torch_vec(R, P, k):
res = R @ P.transpose(0, 1)
envy_mat = (res - torch.diagonal(res, 0).reshape(-1, 1))
return k * (torch.clamp(envy_mat, min=0.))
def expected_inferiority_torch(R, Pi, k, compensate=False, approx=False):
m, n = R.shape
I = torch.zeros((m, m))
for u in range(m):
for v in range(m):
if v == u:
continue
if not approx:
joint_prob = prob_in(Pi[v], k) * prob_in(Pi[u], k)
else:
joint_prob = prob_in_approx(Pi[v], k) * prob_in_approx(Pi[u], k)
if not compensate:
I[u, v] = torch.clamp(R[v] - R[u], min=0., max=None) @ joint_prob
else:
I[u, v] = (R[v] - R[u]) @ joint_prob
return torch.clamp(I, min=0.)
def expected_inferiority_torch_vec(R, P, k, compensate=False, approx=False):
m, n = R.shape
I = torch.zeros((m, m))
P_pow_k = 1 - (1 - P).pow(k) if not approx else P * k
for i in range(m):
first_term = torch.clamp(R - R[i], min=0.) if not compensate else R - R[i]
I[i] = (first_term * (P_pow_k[i] * P_pow_k)).sum(1)
return I
def slow_onehot(idx, P):
m = P.shape[0]
res = torch.zeros_like(P)
for i in range(m):
res[i, idx[i]] = 1.
return res
def eiu_cut_off(R, Pi, k, agg=True):
"""
Evaluate envy, inferiority, utility based on top-k cut-off recommendation
:param R:
:param Pi:
:return: envy, inferiority, utility
"""
# print('Start evaluation!')
m, n = R.shape
# _, rec = torch.topk(Pi, k, dim=1)
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
rec_onehot = slow_onehot(torch.topk(Pi, k, dim=1)[1], Pi)
envy = expected_envy_torch_vec(R, rec_onehot, k=1)
inferiority = expected_inferiority_torch_vec(R, rec_onehot, k=1, compensate=False, approx=False)
utility = expected_utility(R, rec_onehot, k=1)
if agg:
envy = envy.sum(-1).mean()
inferiority = inferiority.sum(-1).mean()
utility = utility.mean()
return envy, inferiority, utility
def eiu_cut_off2(R, Pi, k, agg=True):
"""
Evaluate envy, inferiority, utility based on top-k cut-off recommendation
:param R:
:param Pi:
:return: envy, inferiority, utility
"""
# print('Start evaluation!')
S, U = R
if not isinstance(S, torch.Tensor):
S = torch.tensor(S)
if not isinstance(U, torch.Tensor):
U = torch.tensor(U)
if not isinstance(Pi, torch.Tensor):
Pi = torch.tensor(Pi)
m, n = U.shape
# _, rec = torch.topk(Pi, k, dim=1)
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
rec_onehot = slow_onehot(torch.topk(Pi, k, dim=1)[1], Pi)
envy = expected_envy_torch_vec(U, rec_onehot, k=1)
inferiority = expected_inferiority_torch_vec(S, rec_onehot, k=1, compensate=False, approx=False)
utility = expected_utility(U, rec_onehot, k=1)
if agg:
envy = envy.sum(-1).mean()
inferiority = inferiority.sum(-1).mean()
utility = utility.mean()
return envy, inferiority, utility
"""
Global congestion metrics
"""
def get_competitors(rec_per_job, rec):
m = rec.shape[0]
competitors = []
for i in range(m):
if len(rec[i]) == 1:
competitors.append([rec_per_job[rec[i]]])
else:
competitors.append(rec_per_job[rec[i]])
return np.array(competitors)
def get_better_competitor_scores(rec, R):
m, n = R.shape
_, k = rec.shape
user_ids_per_job = defaultdict(list)
for i, r in enumerate(rec):
for j in r:
user_ids_per_job[j.item()].append(i)
mean_competitor_scores_per_job = np.zeros((m, k))
for i in range(m):
my_rec_jobs = rec[i].numpy()
my_mean_competitors = np.zeros(k)
for j_, j in enumerate(my_rec_jobs):
my_score = R[i, j]
all_ids = user_ids_per_job[j].copy()
all_ids.remove(i)
other_scores = R[all_ids, j]
if not all_ids:
other_scores = np.zeros(1) # TODO if no competition, then it is the negative of my own score
my_mean_competitors[j_] = other_scores.mean() - my_score
# my_mean_competitors[my_mean_competitors < 0] = 0. # TODO only keep the better competitors
mean_competitor_scores_per_job[i] = my_mean_competitors
return mean_competitor_scores_per_job
def get_num_better_competitors(rec, R):
m, n = R.shape
_, k = rec.shape
user_ids_per_job = defaultdict(list)
for i, r in enumerate(rec):
for j in r:
user_ids_per_job[j.item()].append(i)
num_better_competitors = np.zeros((m, k))
for i in range(m):
my_rec_jobs = rec[i].numpy()
better_competitors = np.zeros(k)
for j_, j in enumerate(my_rec_jobs):
my_score = R[i, j]
all_ids = user_ids_per_job[j].copy()
all_ids.remove(i)
other_scores = R[all_ids, j]
better_competitors[j_] = ((other_scores - my_score) > 0).sum()
num_better_competitors[i] = better_competitors
return num_better_competitors
def get_scores_ids_per_job(rec, R):
scores_per_job = defaultdict(list)
ids_per_job = defaultdict(list)
for i in range(len(rec)):
u = rec[i]
for jb in u:
jb = jb.item()
ids_per_job[jb].append(i)
scores_per_job[jb].append(R[i, jb].item())
return scores_per_job, ids_per_job
def get_rank(a, method='ordinal', axis=None, descending=False):
if descending:
a = np.array(a) * -1
return stats.rankdata(a, method=method, axis=axis)
def get_ranks_per_job(scores_rec):
ranks_per_job = defaultdict(list)
for jb in scores_rec:
ranks_per_job[jb] = get_rank(scores_rec[jb], descending=True)
return ranks_per_job
def get_ranks_per_user(ranks_per_job, ids_per_job):
for k, v in ranks_per_job.items():
ranks_per_job[k] = [i - 1 for i in v]
ranks_per_user = defaultdict(list)
for k, v in ids_per_job.items():
rks = ranks_per_job[k]
for i, u in enumerate(v):
ranks_per_user[u].append(rks[i])
return ranks_per_user
def calculate_global_metrics(res, R, k=10):
# get rec
m, n = res.shape
if not torch.is_tensor(res):
res = torch.from_numpy(res)
_, rec = torch.topk(res, k, dim=1)
rec_onehot = slow_onehot(rec, res)
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
try:
rec_per_job = rec_onehot.sum(axis=0).numpy()
except:
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
rec = rec.cpu()
R = R.cpu()
opt_competitors = get_competitors(rec_per_job, rec)
# mean competitors per person
mean_competitors = opt_competitors.mean()
# mean better competitors per person
mean_better_competitors = get_num_better_competitors(rec, R).mean()
# mean competitor scores - my score
mean_diff_scores = get_better_competitor_scores(rec, R)
mean_diff_scores[mean_diff_scores < 0] = 0.
mean_diff_scores = mean_diff_scores.mean()
# mean rank
# scores_opt, ids_opt = get_scores_ids_per_job(rec, R)
# ranks_opt = get_ranks_per_job(scores_opt)
# ranks_per_user_opt = get_ranks_per_user(ranks_opt, ids_opt)
# mean_rank = np.array(list(ranks_per_user_opt.values())).mean()
# gini
gini_index = gini(rec_per_job)
return {'mean_competitors': mean_competitors, 'mean_better_competitors': mean_better_competitors, \
'mean_scores_diff': mean_diff_scores, 'mean_rank': mean_better_competitors, 'gini_index': gini_index}
def calculate_global_metrics2(res, R, k=10):
# get rec
S, U = R
m, n = res.shape
if not torch.is_tensor(res):
res = torch.from_numpy(res)
_, rec = torch.topk(res, k, dim=1)
rec_onehot = slow_onehot(rec, res)
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
try:
rec_per_job = rec_onehot.sum(axis=0).numpy()
except:
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
rec = rec.cpu()
S = S.cpu()
U = U.cpu()
opt_competitors = get_competitors(rec_per_job, rec)
# mean competitors per person
mean_competitors = opt_competitors.mean()
# mean better competitors per person
mean_better_competitors = get_num_better_competitors(rec, S).mean()
# mean competitor scores - my score
mean_diff_scores = get_better_competitor_scores(rec, S)
mean_diff_scores[mean_diff_scores < 0] = 0.
mean_diff_scores = mean_diff_scores.mean()
# mean rank
scores_opt, ids_opt = get_scores_ids_per_job(rec, S)
ranks_opt = get_ranks_per_job(scores_opt)
ranks_per_user_opt = get_ranks_per_user(ranks_opt, ids_opt)
mean_rank = np.array(list(ranks_per_user_opt.values())).mean()
# gini
gini_index = gini(rec_per_job)
return {'mean_competitors': mean_competitors, 'mean_better_competitors': mean_better_competitors, \
'mean_scores_diff': mean_diff_scores, 'mean_rank': mean_rank, 'gini_index': gini_index}
def get_scores_per_job(rec, S):
scores_per_job = defaultdict(list)
for i in range(len(rec)):
u = rec[i]
for jb in u:
jb = jb.item()
scores_per_job[jb].append(S[i, jb].item())
return scores_per_job
|