|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, VisitWebpageTool, Tool, HfApiModel, ToolCallingAgent |
|
import io |
|
import base64 |
|
from langchain.agents import load_tools |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
os.environ["LANGFUSE_HOST"] = "https://cloud.langfuse.com" |
|
|
|
|
|
LANGFUSE_AUTH = base64.b64encode( |
|
f"{os.getenv('LANGFUSE_PUBLIC_KEY')}:{os.getenv('LANGFUSE_SECRET_KEY')}".encode() |
|
).decode() |
|
|
|
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = os.environ.get("LANGFUSE_HOST") + "/api/public/otel" |
|
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}" |
|
|
|
class AttachmentDownloadTool(Tool): |
|
name = "attachment_downloader" |
|
description = "If you need to get attachment from task, you can downloads the file associated with the given task_id. If it does not exist, return None. input: task_id。output: attachment files bytes or None" |
|
inputs = { |
|
"task_id": { |
|
"type": "string", |
|
"description": "task_id that needs to download attachment files." |
|
} |
|
} |
|
output_type = "any" |
|
|
|
def forward(self, task_id): |
|
download_url = f"{DEFAULT_API_URL}/files/" |
|
|
|
try: |
|
response = requests.get(download_url + task_id, stream=True, timeout=15) |
|
if response.status_code != 200: |
|
return None |
|
return response.content |
|
except Exception as e: |
|
return None |
|
|
|
class ImageCaptionTool(Tool): |
|
name = "image_captioner" |
|
description = "Identify the content of the input image and describe it in natural language. Input: image. Output: description text." |
|
inputs = { |
|
"image": { |
|
"type": "image", |
|
"description": "Images that need to be identified and described" |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def setup(self): |
|
self.model = OpenAIServerModel( |
|
model_id="Qwen/Qwen2.5-VL-32B-Instruct", |
|
api_base="https://api.siliconflow.cn/v1/", |
|
api_key=os.getenv('MODEL_TOKEN'), |
|
) |
|
|
|
def forward(self, image): |
|
prompt = "Please describe the content of this picture in detail." |
|
result = self.model(prompt, images=[image]) |
|
|
|
if hasattr(result, "to_raw"): |
|
return result.to_raw() |
|
if hasattr(result, "value"): |
|
return result.value |
|
return str(result) |
|
|
|
class AudioToTextTool(Tool): |
|
name = "audio_to_text" |
|
description = "Convert the input audio content to text. Input: audio. Output: text." |
|
inputs = { |
|
"audio": { |
|
"type": "audio", |
|
"description": "The audio file that needs to be transcribed" |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def setup(self): |
|
|
|
self.model = HfApiModel(model_id="openai/whisper-large-v3") |
|
|
|
def forward(self, audio): |
|
prompt = "Please transcribe this audio content into text." |
|
result = self.model(prompt, audios=[audio]) |
|
if hasattr(result, "to_raw"): |
|
return result.to_raw() |
|
if hasattr(result, "value"): |
|
return result.value |
|
return str(result) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
|
|
|
|
wiki_tool = Tool.from_langchain(load_tools(["wikipedia"])[0]) |
|
|
|
self.think_model = OpenAIServerModel( |
|
model_id="THUDM/GLM-4-32B-0414", |
|
api_base="https://api.siliconflow.cn/v1/", |
|
api_key=os.getenv('MODEL_TOKEN'), |
|
) |
|
self.base_model = OpenAIServerModel( |
|
model_id="Qwen/Qwen2.5-32B-Instruct", |
|
api_base="https://api.siliconflow.cn/v1/", |
|
api_key=os.getenv('MODEL_TOKEN'), |
|
) |
|
|
|
|
|
|
|
|
|
|
|
attachment_tool=AttachmentDownloadTool() |
|
image_tool=ImageCaptionTool() |
|
audio_tool=AudioToTextTool() |
|
self.tools = [attachment_tool,image_tool,audio_tool,wiki_tool,DuckDuckGoSearchTool(), VisitWebpageTool()] |
|
|
|
web_agent = CodeAgent( |
|
tools=[DuckDuckGoSearchTool(), VisitWebpageTool()], |
|
model=self.base_model, |
|
max_steps=10, |
|
name="web_search_agent", |
|
description="Runs web searches for you.", |
|
) |
|
|
|
self.agent = CodeAgent( |
|
tools=self.tools, |
|
model=self.think_model, |
|
|
|
additional_authorized_imports=["time", "numpy", "pandas"], |
|
max_steps=10 |
|
) |
|
print("BasicAgent initialized.") |
|
|
|
def __call__(self, question: str, images=None) -> str: |
|
|
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
try: |
|
if images is not None: |
|
result = self.agent.run(question, images=images) |
|
else: |
|
result = self.agent.run(question) |
|
|
|
print(f"Agent returning answer: {result}") |
|
return result |
|
except Exception as e: |
|
print(f"Agent error: {e}") |
|
return f"AGENT ERROR: {e}" |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
from opentelemetry.sdk.trace import TracerProvider |
|
from openinference.instrumentation.smolagents import SmolagentsInstrumentor |
|
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter |
|
from opentelemetry.sdk.trace.export import SimpleSpanProcessor |
|
|
|
|
|
trace_provider = TracerProvider() |
|
|
|
|
|
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter())) |
|
|
|
|
|
from opentelemetry import trace |
|
trace.set_tracer_provider(trace_provider) |
|
tracer = trace.get_tracer(__name__) |
|
|
|
|
|
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider) |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent("You have got a task, task id is "+task_id+question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
|
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co./spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co./spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |