import re import os from transformers import (BartTokenizerFast, TFAutoModelForSeq2SeqLM) import tensorflow as tf from scraper import scrape_text from fastapi import FastAPI, Response from typing import List from pydantic import BaseModel import uvicorn import json import logging import multiprocessing os.environ['TF_USE_LEGACY_KERAS'] = "1" SUMM_CHECKPOINT = "facebook/bart-base" SUMM_INPUT_N_TOKENS = 400 SUMM_TARGET_N_TOKENS = 300 def load_summarizer_models(): summ_tokenizer = BartTokenizerFast.from_pretrained(SUMM_CHECKPOINT) summ_model = TFAutoModelForSeq2SeqLM.from_pretrained(SUMM_CHECKPOINT) summ_model.load_weights(os.path.join("models", "bart_en_summarizer.h5"), by_name=True) logging.warning('Loaded summarizer models') return summ_tokenizer, summ_model async def summ_preprocess(txt): txt = re.sub(r'^By \. [\w\s]+ \. ', ' ', txt) # By . Ellie Zolfagharifard . txt = re.sub(r'\d{1,2}\:\d\d [a-zA-Z]{3}', ' ', txt) # 10:30 EST txt = re.sub(r'\d{1,2} [a-zA-Z]+ \d{4}', ' ', txt) # 10 November 1990 txt = txt.replace('PUBLISHED:', ' ') txt = txt.replace('UPDATED', ' ') txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after txt = txt.replace(' : ', ' ') txt = txt.replace('(CNN)', ' ') txt = txt.replace('--', ' ') txt = re.sub(r'^\s*[\,\.\:\'\;\|]', ' ', txt) # remove puncts at beginning of sent txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after txt = re.sub(r'\n+',' ', txt) txt = " ".join(txt.split()) return txt async def summ_inference_tokenize(input_: list, n_tokens: int): tokenized_data = summ_tokenizer(text=input_, max_length=SUMM_TARGET_N_TOKENS, truncation=True, padding="max_length", return_tensors="tf") return summ_tokenizer, tokenized_data async def summ_inference(txts: str): txts = [*map(await summ_preprocess, txts)] inference_tokenizer, tokenized_data = await summ_inference_tokenize(input_=txts, n_tokens=SUMM_INPUT_N_TOKENS) pred = summ_model.generate(**tokenized_data, max_new_tokens=SUMM_TARGET_N_TOKENS) result = ["" if t=="" else inference_tokenizer.decode(p, skip_special_tokens=True).strip() for t, p in zip(txts, pred)] return result # def scrape_multi_process(urls): # logging.warning('Entering get_news_multi_process() to extract new news articles') # ''' # Get the data shape by parallely calculating lenght of each chunk and # aggregating them to get lenght of complete training dataset # ''' # pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()) # results = [] # for url in urls: # f = pool.apply_async(scrape_text, [url]) # asynchronously applying function to chunk. Each worker parallely begins to work on the job # results.append(f) # appending result to results # scraped_texts = [] # for f in results: # scraped_texts.append(f.get(timeout=120)) # pool.close() # pool.join() # logging.warning('Exiting scrape_multi_process()') # return scraped_texts def scrape_urls(urls): scraped_texts = [] scrape_errors = [] for url in urls: text, err = await scrape_text(url) scraped_texts.append(text) scrape_errors.append(err) return scraped_texts, scrape_errors ##### API ##### app = FastAPI() summ_tokenizer, summ_model = load_summarizer_models() class URLList(BaseModel): urls: List[str] key: str class NewsSummarizerAPIAuthenticationError(Exception): pass def authenticate_key(api_key: str): if api_key != os.getenv('API_KEY'): raise NewsSummarizerAPIAuthenticationError("Authentication error: Invalid API key.") @app.post("/generate_summary/") async def read_items(q: URLList): try: urls = "" scraped_texts = "" scrape_errors = "" summaries = "" request_json = q.json() request_json = json.loads(request_json) urls = request_json['urls'] api_key = request_json['key'] _ = authenticate_key(api_key) scraped_texts, scrape_errors = scrape_urls(urls) summaries = await summ_inference(scraped_texts) status_code = 200 response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'summaries': summaries, 'summarizer_error': ''} except Exception as e: status_code = 500 if e.__class__.__name__ == "NewsSummarizerAPIAuthenticationError": status_code = 401 response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'summaries': "", 'summarizer_error': f'error: {e}'} json_str = json.dumps(response_json, indent=5) # convert dict to JSON str return Response(content=json_str, media_type='application/json', status_code=status_code) if __name__ == '__main__': uvicorn.run(app=app, host='0.0.0.0', port=7860)