Spaces:
Running
Running
File size: 8,262 Bytes
9801786 df66e8f 9801786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import streamlit as st
import os
from dotenv import load_dotenv
from story_engine import generate_story, continue_story
from model import predict_personality
# Load environment variables and set up API key first
load_dotenv()
# Get API key - handle both local development and Hugging Face Spaces
try:
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
except:
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
st.error("GROQ API Key not found. Please check your environment configuration.")
st.stop()
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["STREAMLIT_WATCHER_TYPE"] = "none"
# Initialize session state variables
if "selected_genre" not in st.session_state:
st.session_state.selected_genre = None
if "story_history" not in st.session_state:
st.session_state.story_history = []
if "story_options" not in st.session_state:
st.session_state.story_options = []
if "choice_history" not in st.session_state:
st.session_state.choice_history = []
# Track trait counts across choices
if "trait_counts" not in st.session_state:
st.session_state.trait_counts = {
"O": 0, # Openness
"C": 0, # Conscientiousness
"E": 0, # Extraversion
"A": 0, # Agreeableness
"N": 0 # Neuroticism
}
# Track personality predictions for each step
if "personality_history" not in st.session_state:
st.session_state.personality_history = []
st.set_page_config(layout="wide", page_title="PSYCHEPLOT", page_icon="๐พ")
st.title("๐พ PSYCHEPLOT")
st.header("Select your genre")
if st.session_state.selected_genre is None:
col1, col2, col3, col4 = st.columns(4)
with col1:
if st.button("Crime"):
st.session_state.selected_genre = "Crime"
story_segment, options = generate_story("Crime", st.session_state.story_history)
st.session_state.story_options = options
with col2:
if st.button("Comedy"):
st.session_state.selected_genre = "Comedy"
story_segment, options = generate_story("Comedy", st.session_state.story_history)
st.session_state.story_options = options
with col3:
if st.button("Dark"):
st.session_state.selected_genre = "Dark"
story_segment, options = generate_story("Dark", st.session_state.story_history)
st.session_state.story_options = options
with col4:
if st.button("Educational"):
st.session_state.selected_genre = "Educational"
story_segment, options = generate_story("Educational", st.session_state.story_history)
st.session_state.story_options = options
if "step_count" not in st.session_state:
st.session_state.step_count = 0
if "chosen_options" not in st.session_state:
st.session_state.chosen_options = []
def update_personality_traits(choice_text):
"""Update trait counts based on the current choice"""
result = predict_personality(choice_text)
st.session_state.personality_history.append(result)
# Custom thresholds for each trait
thresholds = {
"O": 0.20, # Openness
"C": 0.20, # Conscientiousness
"E": 0.15, # Extraversion
"A": 0.15, # Agreeableness
"N": 0.30 # Higher threshold for Neuroticism
}
# Update trait counts with custom thresholds
for trait, score in result["traits"].items():
if score >= thresholds[trait]:
st.session_state.trait_counts[trait] += 1
return result
def get_final_personality():
"""Calculate final personality based on accumulated trait counts"""
from model import PERSONALITY_MAP, DOMINANT_TYPES
traits = ["O", "C", "E", "A", "N"]
trait_scores = {}
# Calculate scores
for trait in traits:
count = st.session_state.trait_counts[trait]
score = count / st.session_state.step_count
trait_scores[trait] = score
# Find potential dominant traits
max_score = max(trait_scores.values())
dominant_candidates = [
trait for trait, score in trait_scores.items()
if abs(score - max_score) < 0.01
]
# Check if there's a clear dominant trait
if len(dominant_candidates) == 1:
dominant_trait = dominant_candidates[0]
other_scores = [score for trait, score in trait_scores.items()
if trait != dominant_trait]
max_other = max(other_scores)
if max_score >= 0.5 and (max_score - max_other) >= 0.2:
profile = DOMINANT_TYPES[dominant_trait]
return {
"type": dominant_trait,
"category": "Dominant Trait",
"label": profile["label"],
"description": profile["description"],
"traits": trait_scores
}
# If no clear dominant trait, create binary code and use personality map
binary_code = "".join(["H" if trait_scores[trait] > 0.3 else "L"
for trait in traits])
profile = PERSONALITY_MAP.get(binary_code, {
"label": "Unique Profile",
"description": "A distinctive combination of personality traits that creates a unique character profile."
})
return {
"type": binary_code,
"category": "Mixed Profile",
"label": profile["label"],
"description": profile["description"],
"traits": trait_scores
}
if st.session_state.selected_genre:
st.subheader(f"๐ Story Begins ({st.session_state.selected_genre} story):")
for i, segment in enumerate(st.session_state.story_history):
cleaned_segment = "\n".join([line for line in segment.split("\n") if not line.startswith(("1.", "2.", "3.", "4."))])
st.write(cleaned_segment)
if i < len(st.session_state.story_history) - 1:
st.divider()
if st.session_state.step_count < 9:
st.subheader("๐ฎ Choose the next step:")
for option in st.session_state.story_options:
if st.button(option):
story_segment, options = continue_story(st.session_state.story_history, option)
st.session_state.story_options = options
# Store the choice
st.session_state.choice_history.append({
"step": st.session_state.step_count + 1,
"chosen_option": option
})
st.session_state.chosen_options.append(option)
# Update personality prediction after this choice
choice_text = f"Step {st.session_state.step_count + 1}: {option}"
update_personality_traits(choice_text)
st.session_state.step_count += 1
st.rerun()
else:
# Final personality calculation based on accumulated trait counts
result = get_final_personality()
st.subheader("๐ง Final Personality Assessment:")
st.markdown(f"**Type:** `{result['type']}` ({result['category']})")
st.markdown(f"**Label:** {result['label']}")
st.markdown("**Description:**")
st.write(result['description'])
st.divider()
st.markdown("### ๐ Trait Breakdown")
for trait, score in result["traits"].items():
count = st.session_state.trait_counts[trait]
st.progress(score, text=f"{trait}: {score:.2f} ({count}/{st.session_state.step_count} choices)")
# Show choices
st.divider()
with st.expander("๐ Your Story Choices"):
choices_text = "\n".join([f"Step {choice['step']}: {choice['chosen_option']}" for choice in st.session_state.choice_history])
st.text(choices_text)
# Show personality evolution
with st.expander("๐ Personality Evolution"):
for i, personality in enumerate(st.session_state.personality_history):
st.markdown(f"**Step {i+1}**: {personality['type']} - {personality['label']}")
cols = st.columns(5)
for j, (trait, score) in enumerate(personality['traits'].items()):
with cols[j]:
st.progress(score, text=f"{trait}: {score:.2f}") |