hbofficial-1005 commited on
Commit
68f05a6
·
1 Parent(s): f8a2fb4

Updated Gradio App

Browse files
.github/workflows/ci-cd.yml CHANGED
@@ -85,7 +85,7 @@ jobs:
85
  git merge --no-ff origin/develop
86
  git push origin main
87
 
88
- sync-develop:
89
  needs: merge-to-main
90
  runs-on: ubuntu-latest
91
  steps:
 
85
  git merge --no-ff origin/develop
86
  git push origin main
87
 
88
+ finalize-deployment:
89
  needs: merge-to-main
90
  runs-on: ubuntu-latest
91
  steps:
app.py CHANGED
@@ -1,12 +1,10 @@
1
  import gradio as gr
2
  from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
3
 
4
- # Load fine-tuned model
5
- model_path = "./ner_model"
6
  tokenizer = AutoTokenizer.from_pretrained(model_path)
7
  model = AutoModelForTokenClassification.from_pretrained(model_path)
8
 
9
- # Create NER pipeline
10
  ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
11
 
12
  def ner_prediction(text):
 
1
  import gradio as gr
2
  from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
3
 
4
+ model_path = "./models/ner_model"
 
5
  tokenizer = AutoTokenizer.from_pretrained(model_path)
6
  model = AutoModelForTokenClassification.from_pretrained(model_path)
7
 
 
8
  ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
9
 
10
  def ner_prediction(text):
models/ner_model/test.txt ADDED
File without changes
train.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import torch
2
  from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
3
  from datasets import load_dataset, load_metric
@@ -21,7 +22,7 @@ model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_la
21
 
22
  # Training arguments
23
  training_args = TrainingArguments(
24
- output_dir="./ner_model",
25
  evaluation_strategy="epoch",
26
  save_strategy="epoch",
27
  learning_rate=2e-5,
@@ -51,6 +52,10 @@ trainer = Trainer(
51
  # Train model
52
  trainer.train()
53
 
 
 
 
 
54
  # Save model
55
- trainer.save_model("./ner_model")
56
- tokenizer.save_pretrained("./ner_model")
 
1
+ import os
2
  import torch
3
  from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
4
  from datasets import load_dataset, load_metric
 
22
 
23
  # Training arguments
24
  training_args = TrainingArguments(
25
+ output_dir="./models/ner_model",
26
  evaluation_strategy="epoch",
27
  save_strategy="epoch",
28
  learning_rate=2e-5,
 
52
  # Train model
53
  trainer.train()
54
 
55
+ # Ensure directory exists before saving
56
+ output_dir = "./models/ner_model"
57
+ os.makedirs(output_dir, exist_ok=True)
58
+
59
  # Save model
60
+ trainer.save_model(output_dir)
61
+ tokenizer.save_pretrained(output_dir)