Spaces:
Configuration error
Configuration error
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer | |
from datasets import load_dataset, load_metric | |
# Load dataset | |
dataset = load_dataset("conll2003") | |
# Load tokenizer and model checkpoint | |
model_checkpoint = "dbmdz/bert-large-cased-finetuned-conll03-english" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
# Tokenize the dataset | |
def tokenize_and_align_labels(examples): | |
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) | |
return tokenized_inputs | |
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=True) | |
# Load model for token classification (with specified number of labels) | |
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=9) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./models/ner_model", | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
learning_rate=2e-5, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
) | |
# Load metric | |
metric = load_metric("seqeval") | |
def compute_metrics(eval_pred): | |
predictions, labels = eval_pred | |
predictions = predictions.argmax(-1) | |
return metric.compute(predictions=predictions, references=labels) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["validation"], | |
tokenizer=tokenizer, | |
compute_metrics=compute_metrics, | |
) | |
# Train model | |
trainer.train() | |
# Ensure the output directory exists | |
output_dir = "./models/ner_model" | |
os.makedirs(output_dir, exist_ok=True) | |
# Make sure the model config has a model_type key. | |
# Since we started with a BERT checkpoint, we set it to "bert". | |
if not hasattr(model.config, "model_type") or not model.config.model_type: | |
model.config.model_type = "bert" | |
# Save the trained model and tokenizer | |
model.save_pretrained(output_dir) | |
tokenizer.save_pretrained(output_dir) |