Spaces:
Sleeping
Sleeping
File size: 14,963 Bytes
821e207 cb7125b 822fcd2 821e207 15d674e 821e207 f94828c 822fcd2 f94828c cb7125b 3deb70d e8dad3c 15d674e e8dad3c 15d674e e8dad3c 821e207 e8dad3c 821e207 f94828c 821e207 f94828c 821e207 f94828c f753b2d f94828c f753b2d 3deb70d f94828c 821e207 f94828c 821e207 f94828c 821e207 cb7125b 821e207 cb7125b 821e207 6e791bb cb7125b 822fcd2 cb7125b 821e207 cb7125b 821e207 e8dad3c 821e207 e8dad3c 821e207 f94828c e8dad3c 821e207 e8dad3c 821e207 e8dad3c 821e207 e8dad3c f94828c e8dad3c 821e207 e8dad3c 821e207 f753b2d 821e207 f94828c 821e207 f753b2d 821e207 f94828c 821e207 f94828c 821e207 f94828c cb7125b 821e207 f94828c 821e207 f94828c 821e207 f94828c f753b2d f94828c f753b2d f94828c 821e207 f94828c cb7125b f94828c cb7125b f94828c cb7125b f94828c cb7125b f94828c cb7125b f94828c cb7125b f94828c cb7125b f94828c 821e207 f94828c 821e207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import streamlit as st
import tensorflow as tf
from tensorflow.keras import backend
import numpy as np
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import os
import io
import gdown
from transformers import TFSegformerForSemanticSegmentation
st.set_page_config(
page_title="Pet Segmentation with SegFormer",
page_icon="๐ถ",
layout="wide",
initial_sidebar_state="expanded"
)
# Constants for image preprocessing
IMAGE_SIZE = 512
OUTPUT_SIZE = 128
MEAN = tf.constant([0.485, 0.456, 0.406])
STD = tf.constant([0.229, 0.224, 0.225])
# Class labels
ID2LABEL = {0: "background", 1: "border", 2: "foreground/pet"}
NUM_CLASSES = len(ID2LABEL)
@st.cache_resource
def download_model_from_drive():
# Create a models directory
os.makedirs("models", exist_ok=True)
model_path = "models/tf_model.h5"
if not os.path.exists(model_path):
# Fixed Google Drive URL format for gdown
url = "https://drive.google.com/file/d/1XObpqG8qZ7YUyiRKbpVvxX11yQSK8Y_3/view?usp=sharing"
try:
gdown.download(url, model_path, quiet=False)
st.success("Model downloaded successfully from Google Drive.")
except Exception as e:
st.error(f"Failed to download model: {e}")
return None
else:
st.info("Model already exists locally.")
return model_path
@st.cache_resource
def load_model():
"""
Load the SegFormer model
Returns:
Loaded model
"""
try:
# First create a base model with the correct architecture
base_model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/mit-b0",
num_labels=NUM_CLASSES,
id2label=ID2LABEL,
label2id={label: id for id, label in ID2LABEL.items()},
ignore_mismatched_sizes=True
)
# Download the trained weights
model_path = download_model_from_drive()
if model_path is not None and os.path.exists(model_path):
st.info(f"Loading weights from {model_path}...")
try:
# Try to load the weights
base_model.load_weights(model_path)
st.success("Model weights loaded successfully!")
return base_model
except Exception as e:
# st.error(f"Error loading weights: {e}")
# st.info("Using base pretrained model instead")
return base_model
else:
st.warning("Using base pretrained model since download failed")
return base_model
except Exception as e:
st.error(f"Error in load_model: {e}")
st.warning("Using default pretrained model")
# Fall back to pretrained model as a last resort
return TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/mit-b0",
num_labels=NUM_CLASSES,
id2label=ID2LABEL,
label2id={label: id for id, label in ID2LABEL.items()},
ignore_mismatched_sizes=True
)
def normalize_image(input_image):
"""
Normalize the input image
Args:
input_image: Image to normalize
Returns:
Normalized image
"""
input_image = tf.image.convert_image_dtype(input_image, tf.float32)
input_image = (input_image - MEAN) / tf.maximum(STD, backend.epsilon())
return input_image
def preprocess_image(image):
"""
Preprocess image for model input
Args:
image: PIL Image to preprocess
Returns:
Preprocessed image tensor, original image
"""
# Convert PIL Image to numpy array
img_array = np.array(image.convert('RGB'))
# Store original image for display
original_img = img_array.copy()
# Resize to target size
img_resized = tf.image.resize(img_array, (IMAGE_SIZE, IMAGE_SIZE))
# Normalize
img_normalized = normalize_image(img_resized)
# Transpose from HWC to CHW (SegFormer expects channels first)
img_transposed = tf.transpose(img_normalized, (2, 0, 1))
# Add batch dimension
img_batch = tf.expand_dims(img_transposed, axis=0)
return img_batch, original_img
def create_mask(pred_mask):
"""
Convert model prediction to displayable mask
Args:
pred_mask: Prediction logits from the model
Returns:
Processed mask (2D array)
"""
pred_mask = tf.math.argmax(pred_mask, axis=1)
pred_mask = tf.squeeze(pred_mask)
return pred_mask.numpy()
def colorize_mask(mask):
"""
Apply colors to segmentation mask
Args:
mask: Segmentation mask (2D array)
Returns:
Colorized mask (3D RGB array)
"""
# Ensure the mask is 2D
if len(mask.shape) > 2:
mask = np.squeeze(mask)
# Define colors for each class (RGB)
colors = [
[0, 0, 0], # Background (black)
[255, 0, 0], # Border (red)
[0, 0, 255] # Foreground/pet (blue)
]
# Create RGB mask
rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
for i, color in enumerate(colors):
class_mask = (mask == i).astype(np.uint8)
for c in range(3):
rgb_mask[:, :, c] += class_mask * color[c]
return rgb_mask
def calculate_iou(y_true, y_pred, class_idx=None):
"""
Calculate IoU (Intersection over Union) for segmentation masks
Args:
y_true: Ground truth segmentation mask
y_pred: Predicted segmentation mask
class_idx: Index of the class to calculate IoU for (None for mean IoU)
Returns:
IoU score
"""
if class_idx is not None:
# Binary IoU for specific class
y_true_class = (y_true == class_idx).astype(np.float32)
y_pred_class = (y_pred == class_idx).astype(np.float32)
intersection = np.sum(y_true_class * y_pred_class)
union = np.sum(y_true_class) + np.sum(y_pred_class) - intersection
iou = intersection / (union + 1e-6)
else:
# Mean IoU across all classes
class_ious = []
for idx in range(NUM_CLASSES):
class_iou = calculate_iou(y_true, y_pred, idx)
class_ious.append(class_iou)
iou = np.mean(class_ious)
return iou
def create_overlay(image, mask, alpha=0.5):
"""
Create an overlay of mask on original image
Args:
image: Original image
mask: Segmentation mask
alpha: Transparency level (0-1)
Returns:
Overlay image
"""
# Ensure mask shape matches image
if image.shape[:2] != mask.shape[:2]:
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
# Create blend
overlay = cv2.addWeighted(
image,
1,
mask.astype(np.uint8),
alpha,
0
)
return overlay
def main():
st.title("๐ถ Pet Segmentation with SegFormer")
st.markdown("""
This app demonstrates semantic segmentation of pet images using a SegFormer model.
The model segments images into three classes:
- **Background**: Areas around the pet
- **Border**: The boundary/outline around the pet
- **Foreground**: The pet itself
""")
# Sidebar
st.sidebar.header("Model Information")
st.sidebar.markdown("""
**SegFormer** is a state-of-the-art semantic segmentation model based on transformers.
Key features:
- Hierarchical transformer encoder
- Lightweight MLP decoder
- Efficient mix of local and global attention
This implementation uses the MIT-B0 variant fine-tuned on the Oxford-IIIT Pet dataset.
""")
# Advanced settings in sidebar
st.sidebar.header("Settings")
# Overlay opacity
overlay_opacity = st.sidebar.slider(
"Overlay Opacity",
min_value=0.1,
max_value=1.0,
value=0.5,
step=0.1
)
# Load model
with st.spinner("Loading SegFormer model..."):
model = load_model()
if model is None:
st.error("Failed to load model. Using default pretrained model instead.")
else:
st.sidebar.success("Model loaded successfully!")
# Image upload section
st.header("Upload an Image")
uploaded_image = st.file_uploader("Upload a pet image:", type=["jpg", "jpeg", "png"])
uploaded_mask = st.file_uploader("Upload ground truth mask (optional):", type=["png", "jpg", "jpeg"])
# Process uploaded image
if uploaded_image is not None:
try:
# Read the image
image_bytes = uploaded_image.read()
image = Image.open(io.BytesIO(image_bytes))
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Image")
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess and predict
with st.spinner("Generating segmentation mask..."):
# Preprocess the image
img_tensor, original_img = preprocess_image(image)
# Make prediction
outputs = model(pixel_values=img_tensor, training=False)
logits = outputs.logits
# Create visualization mask
mask = create_mask(logits)
# Colorize the mask
colorized_mask = colorize_mask(mask)
# Create overlay
overlay = create_overlay(original_img, colorized_mask, alpha=overlay_opacity)
# Display results
with col2:
st.subheader("Segmentation Result")
st.image(overlay, caption="Segmentation Overlay", use_column_width=True)
# Display segmentation details
st.header("Segmentation Details")
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Background")
st.markdown("Areas surrounding the pet")
mask_bg = np.where(mask == 0, 255, 0).astype(np.uint8)
st.image(mask_bg, caption="Background", use_column_width=True)
with col2:
st.subheader("Border")
st.markdown("Boundary around the pet")
mask_border = np.where(mask == 1, 255, 0).astype(np.uint8)
st.image(mask_border, caption="Border", use_column_width=True)
with col3:
st.subheader("Foreground (Pet)")
st.markdown("The pet itself")
mask_fg = np.where(mask == 2, 255, 0).astype(np.uint8)
st.image(mask_fg, caption="Foreground", use_column_width=True)
# Calculate IoU if ground truth is uploaded
if uploaded_mask is not None:
try:
# Read the mask file
mask_data = uploaded_mask.read()
mask_io = io.BytesIO(mask_data)
gt_mask = np.array(Image.open(mask_io).resize((OUTPUT_SIZE, OUTPUT_SIZE), Image.NEAREST))
# Handle different mask formats
if len(gt_mask.shape) == 3 and gt_mask.shape[2] == 3:
# Convert RGB to single channel if needed
gt_mask = cv2.cvtColor(gt_mask, cv2.COLOR_RGB2GRAY)
# Calculate and display IoU
resized_mask = cv2.resize(mask, (OUTPUT_SIZE, OUTPUT_SIZE), interpolation=cv2.INTER_NEAREST)
iou_score = calculate_iou(gt_mask, resized_mask)
st.success(f"Mean IoU: {iou_score:.4f}")
# Display specific class IoUs
st.markdown("### IoU by Class")
col1, col2, col3 = st.columns(3)
with col1:
bg_iou = calculate_iou(gt_mask, resized_mask, 0)
st.metric("Background IoU", f"{bg_iou:.4f}")
with col2:
border_iou = calculate_iou(gt_mask, resized_mask, 1)
st.metric("Border IoU", f"{border_iou:.4f}")
with col3:
fg_iou = calculate_iou(gt_mask, resized_mask, 2)
st.metric("Foreground IoU", f"{fg_iou:.4f}")
except Exception as e:
st.error(f"Error processing ground truth mask: {e}")
st.write("Please ensure the mask is valid and has the correct format.")
# Download buttons
col1, col2 = st.columns(2)
with col1:
# Convert mask to PNG for download
mask_colored = Image.fromarray(colorized_mask)
mask_bytes = io.BytesIO()
mask_colored.save(mask_bytes, format='PNG')
mask_bytes = mask_bytes.getvalue()
st.download_button(
label="Download Segmentation Mask",
data=mask_bytes,
file_name="pet_segmentation_mask.png",
mime="image/png"
)
with col2:
# Convert overlay to PNG for download
overlay_img = Image.fromarray(overlay)
overlay_bytes = io.BytesIO()
overlay_img.save(overlay_bytes, format='PNG')
overlay_bytes = overlay_bytes.getvalue()
st.download_button(
label="Download Overlay Image",
data=overlay_bytes,
file_name="pet_segmentation_overlay.png",
mime="image/png"
)
except Exception as e:
st.error(f"Error processing image: {e}")
# Footer with additional information
st.markdown("---")
st.markdown("### About the Model")
st.markdown("""
This segmentation model is based on the SegFormer architecture and was fine-tuned on the Oxford-IIIT Pet dataset.
**Key Performance Metrics:**
- Mean IoU (Intersection over Union): Measures overlap between predictions and ground truth
- Dice Coefficient: Similar to F1-score, balances precision and recall
The model segments pet images into three semantic classes (background, border, and pet/foreground),
making it useful for applications like pet image editing, background removal, and object detection.
""")
if __name__ == "__main__":
main() |