Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import torch | |
# Directory where your fine-tuned Phi-2 model and associated files are stored. | |
model_dir = "./phi2-qlora-finetuned" | |
# Directory to store offloaded model parts (for large models). | |
offload_dir = "./offload" | |
# Load the tokenizer. | |
tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
# Load the base model with offloading support. | |
# base_model = AutoModelForCausalLM.from_pretrained( | |
# model_dir, | |
# device_map="auto", # Automatically use available devices (GPU/CPU). | |
# offload_folder=offload_dir # Directory to offload layers (for larger models). | |
# ) | |
# CPU | |
base_model = AutoModelForCausalLM.from_pretrained( | |
model_dir, | |
device_map="cpu", # Force CPU usage | |
torch_dtype=torch.float32, # Use float32 for CPU | |
trust_remote_code=True, | |
offload_folder=offload_dir # Directory to offload layers (for larger models). | |
) | |
# Load the adapter (PEFT) weights. | |
model = PeftModel.from_pretrained(base_model, model_dir) | |
def generate_response(prompt, max_new_tokens=200, temperature=0.7): | |
""" | |
Generate a response from the fine-tuned Phi-2 model given a prompt. | |
""" | |
# Tokenize the prompt and move tensors to the model's device. | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# Generate output text using sampling. | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature | |
) | |
# Decode the generated tokens and return the response. | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Create a Gradio interface with example prompts. | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(lines=4, label="Input Prompt"), | |
gr.Slider(50, 500, value=200, label="Max New Tokens"), | |
gr.Slider(0.0, 1.0, value=0.7, label="Temperature") | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="Phi-2 Fine-tuned Chat", | |
description="A Hugging Face Space app serving the fine-tuned Phi-2 model trained on OpenAssistant/oasst1 data.", | |
examples=[ | |
["Hello, how are you today?", 150, 0.7], | |
["Translate this sentence from English to French: I love programming.", 200, 0.8], | |
["Tell me a joke about artificial intelligence.", 180, 0.6], | |
["what is value of 2 + 2: ", 150, 0.9], | |
["Explain what about economics and how does it impact the individuals financial sector: ", 250, 0.7], | |
["Who is Randy orton?", 200, 0.8] | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |