File size: 3,337 Bytes
9d9cc80
b9185e7
 
 
4bf6d97
 
 
 
 
 
 
 
 
 
7ca8994
 
f498762
9d9cc80
f498762
b9185e7
 
 
 
 
 
 
f498762
b9185e7
4bf6d97
 
 
 
 
 
 
 
7ca8994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9185e7
 
 
 
0c5d476
b9185e7
 
 
 
 
 
 
 
 
 
 
 
 
7ca8994
b9185e7
 
 
 
7ca8994
 
 
b9185e7
 
7ca8994
 
b9185e7
 
7ca8994
 
 
4bf6d97
7ca8994
b9185e7
 
7ca8994
 
 
9d9cc80
7ca8994
 
 
 
b9185e7
7ca8994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9cc80
7ca8994
b9185e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os

os.system("pip install git+https://github.com/shumingma/transformers.git")

import threading
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
)
import gradio as gr
import spaces

model_id = "microsoft/bitnet-b1.58-2B-4T"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
print(model.device)

@spaces.GPU
def respond(
    message: str,
    history: list[tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    """
    Generate a chat response using streaming with TextIteratorStreamer.
    Args:
        message: User's current message.
        history: List of (user, assistant) tuples from previous turns.
        system_message: Initial system prompt guiding the assistant.
        max_tokens: Maximum number of tokens to generate.
        temperature: Sampling temperature.
        top_p: Nucleus sampling probability.
    Yields:
        The growing response text as new tokens are generated.
    """
    messages = [{"role": "system", "content": system_message}]
    for user_msg, bot_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if bot_msg:
            messages.append({"role": "assistant", "content": bot_msg})
    messages.append({"role": "user", "content": message})

    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    streamer = TextIteratorStreamer(
        tokenizer, skip_prompt=True, skip_special_tokens=True
    )
    generate_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=True,
    )
    thread = threading.Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    response = ""
    for new_text in streamer:
        response += new_text
        yield response

demo = gr.ChatInterface(
    fn=respond,
    title="Bitnet-b1.58-2B-4T",
    description="Bitnet-b1.58-2B-4T",
    examples=[
        [
            "Hello!",
            "You are a helpful AI.",
            512,
            0.7,
            0.95,
        ],
        [
            "Can you code a snake game?",
            "You are a helpful AI.",
            2048,
            0.7,
            0.95,
        ],
    ],
    additional_inputs=[
        gr.Textbox(
            value="You are a helpful AI assistant.",
            label="System message"
        ),
        gr.Slider(
            minimum=1,
            maximum=8192,
            value=2048,
            step=1,
            label="Max new tokens"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.7,
            step=0.1,
            label="Temperature"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()