local embedding
Browse files- rag.py +6 -1
- requirements.txt +1 -0
rag.py
CHANGED
@@ -12,7 +12,12 @@ df['content']=df['product']+"; "+df['purpose']+"; "+df['benefit']+"; "+df['fee']
|
|
12 |
|
13 |
corpus = [row['content'] for i,row in df.iterrows()]
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
class RecommendProduct(dspy.Signature):
|
17 |
"""
|
18 |
Recommend RBC financial product based on verbatim
|
|
|
12 |
|
13 |
corpus = [row['content'] for i,row in df.iterrows()]
|
14 |
|
15 |
+
'huggingface/BAAI/bge-small-en-v1.5'
|
16 |
+
from sentence_transformers import SentenceTransformer
|
17 |
+
|
18 |
+
# Load an extremely efficient local model for retrieval
|
19 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device="cpu")
|
20 |
+
embedder = dspy.Embedder(model.encode)
|
21 |
class RecommendProduct(dspy.Signature):
|
22 |
"""
|
23 |
Recommend RBC financial product based on verbatim
|
requirements.txt
CHANGED
@@ -2,6 +2,7 @@ markdownify
|
|
2 |
requests
|
3 |
duckduckgo_search
|
4 |
pandas
|
|
|
5 |
langchain
|
6 |
langgraph
|
7 |
litellm==1.63
|
|
|
2 |
requests
|
3 |
duckduckgo_search
|
4 |
pandas
|
5 |
+
sentence_transformers
|
6 |
langchain
|
7 |
langgraph
|
8 |
litellm==1.63
|