counter
Browse files
app.py
CHANGED
@@ -126,6 +126,10 @@ If your product discovery experience isn’t working as hard as your marketing b
|
|
126 |
================================================
|
127 |
- Retrieval: Public Product Data using Tavily Search
|
128 |
- Recommend: Competition Product
|
|
|
|
|
|
|
|
|
129 |
""")
|
130 |
in_verbatim = gr.Textbox(label="Verbatim")
|
131 |
out_product = gr.Textbox(label="Product")
|
@@ -237,6 +241,7 @@ Uses customer data and behavior to craft messages that resonate with specific se
|
|
237 |
gr.Markdown("""
|
238 |
Objective: Transform Personal Pain Points into Actionable Insights with a Dynamic Knowledge Graph Framework
|
239 |
=====================================
|
|
|
240 |
""")
|
241 |
in_verbatim = gr.Textbox(label="Question")
|
242 |
out_product = gr.JSON(label="Knowledge Graph")
|
@@ -371,13 +376,18 @@ Allows downstream tasks (like sentiment analysis or topic modeling) to focus on
|
|
371 |
""")
|
372 |
|
373 |
|
374 |
-
with gr.Tab("
|
375 |
gr.Markdown("""
|
376 |
Objective: Streamline Customer Insights: Auto-Classify Feedback for Product Optimization
|
377 |
================================================
|
378 |
- multi class classification, could have multiple label for 1 feedback
|
379 |
- fix classification in this use case: online banking, card, auto finance, mortgage, insurance
|
380 |
- LLM Judge to evaluate relevancy
|
|
|
|
|
|
|
|
|
|
|
381 |
""")
|
382 |
in_verbatim = gr.Textbox(label="Customer Feedback separate by ;")
|
383 |
out_product = gr.Textbox(label="Classification & Evaluation")
|
@@ -506,6 +516,7 @@ For example, Comcast reduced repeat service calls by 17% after deploying entity
|
|
506 |
gr.Markdown("""
|
507 |
Objective: Leveraging Human Feedback to Deliver Personalized Content that Proactively Solves Customer Pain Points
|
508 |
================================================
|
|
|
509 |
""")
|
510 |
|
511 |
in_verbatim = gr.Textbox(label="Persona")
|
|
|
126 |
================================================
|
127 |
- Retrieval: Public Product Data using Tavily Search
|
128 |
- Recommend: Competition Product
|
129 |
+
|
130 |
+
### benefits
|
131 |
+
- remove friction in research, saving labour time
|
132 |
+
- improve insight quality by identify competitor
|
133 |
""")
|
134 |
in_verbatim = gr.Textbox(label="Verbatim")
|
135 |
out_product = gr.Textbox(label="Product")
|
|
|
241 |
gr.Markdown("""
|
242 |
Objective: Transform Personal Pain Points into Actionable Insights with a Dynamic Knowledge Graph Framework
|
243 |
=====================================
|
244 |
+
- Identify what channel customer prefer
|
245 |
""")
|
246 |
in_verbatim = gr.Textbox(label="Question")
|
247 |
out_product = gr.JSON(label="Knowledge Graph")
|
|
|
376 |
""")
|
377 |
|
378 |
|
379 |
+
with gr.Tab("Segmentation"):
|
380 |
gr.Markdown("""
|
381 |
Objective: Streamline Customer Insights: Auto-Classify Feedback for Product Optimization
|
382 |
================================================
|
383 |
- multi class classification, could have multiple label for 1 feedback
|
384 |
- fix classification in this use case: online banking, card, auto finance, mortgage, insurance
|
385 |
- LLM Judge to evaluate relevancy
|
386 |
+
|
387 |
+
Business use case: customer segmentation for ab testing
|
388 |
+
------------------------------------------------
|
389 |
+
- Acquisition: Behavior cluster, we can predict not only who is likely to click—but who is likely to retain
|
390 |
+
- Activation: segmenting users based on behavioral signals—like browsing activity, time since last engagement, or declining open/click rates.
|
391 |
""")
|
392 |
in_verbatim = gr.Textbox(label="Customer Feedback separate by ;")
|
393 |
out_product = gr.Textbox(label="Classification & Evaluation")
|
|
|
516 |
gr.Markdown("""
|
517 |
Objective: Leveraging Human Feedback to Deliver Personalized Content that Proactively Solves Customer Pain Points
|
518 |
================================================
|
519 |
+
- replace human with reward/penalty function, you will get RLHF by ranking the solutions
|
520 |
""")
|
521 |
|
522 |
in_verbatim = gr.Textbox(label="Persona")
|
knowledge.py
CHANGED
@@ -88,7 +88,7 @@ def generate_graph(q, input=KnowledgeGraph()) -> KnowledgeGraph:
|
|
88 |
messages=[
|
89 |
{
|
90 |
"role": "user",
|
91 |
-
"content": dedent(f"""As a world class iterative knowledge graph builder and a Marketing Data Scientist for delivery personalized solution in Personal and Commercial Banking. Help me understand this person pain points and needs by describing the interaction as a detailed knowledge graph:
|
92 |
### Interaction: {q}
|
93 |
### Merge from existing KnowledgeGraph, Here is the current state of the graph:
|
94 |
{input.model_dump_json()}
|
|
|
88 |
messages=[
|
89 |
{
|
90 |
"role": "user",
|
91 |
+
"content": dedent(f"""As a world class iterative knowledge graph builder and a Marketing Data Scientist for delivery personalized solution in Personal and Commercial Banking. Help me understand this person pain points, preference of contacts and needs by describing the interaction as a detailed knowledge graph:
|
92 |
### Interaction: {q}
|
93 |
### Merge from existing KnowledgeGraph, Here is the current state of the graph:
|
94 |
{input.model_dump_json()}
|
rag.py
CHANGED
@@ -4,7 +4,8 @@ import pandas as pd
|
|
4 |
|
5 |
#lm = dspy.LM('ollama_chat/deepseek-r1', api_base='http://localhost:11434', api_key='')
|
6 |
#lm = dspy.LM('huggingface/Qwen/Qwen2.5-Coder-32B-Instruct')
|
7 |
-
lm = dspy.LM('huggingface/meta-llama/Llama-3.2-1B')
|
|
|
8 |
dspy.configure(lm=lm)
|
9 |
|
10 |
df = pd.read_csv("product2.csv")
|
|
|
4 |
|
5 |
#lm = dspy.LM('ollama_chat/deepseek-r1', api_base='http://localhost:11434', api_key='')
|
6 |
#lm = dspy.LM('huggingface/Qwen/Qwen2.5-Coder-32B-Instruct')
|
7 |
+
#lm = dspy.LM('huggingface/meta-llama/Llama-3.2-1B')
|
8 |
+
lm = dspy.LM('groq/gemma-7b-it')
|
9 |
dspy.configure(lm=lm)
|
10 |
|
11 |
df = pd.read_csv("product2.csv")
|
tool.py
CHANGED
@@ -6,7 +6,8 @@ from tavily import TavilyClient
|
|
6 |
|
7 |
#lm = dspy.LM('ollama_chat/deepseek-r1', api_base='http://localhost:11434', api_key='')
|
8 |
#lm = dspy.LM('huggingface/Qwen/Qwen2.5-Coder-32B-Instruct')
|
9 |
-
lm = dspy.LM('huggingface/meta-llama/Llama-3.2-1B')
|
|
|
10 |
dspy.configure(lm=lm)
|
11 |
|
12 |
search_client = TavilyClient(api_key=os.environ["T_TOKEN"])
|
|
|
6 |
|
7 |
#lm = dspy.LM('ollama_chat/deepseek-r1', api_base='http://localhost:11434', api_key='')
|
8 |
#lm = dspy.LM('huggingface/Qwen/Qwen2.5-Coder-32B-Instruct')
|
9 |
+
#lm = dspy.LM('huggingface/meta-llama/Llama-3.2-1B')
|
10 |
+
lm = dspy.LM('groq/gemma-7b-it')
|
11 |
dspy.configure(lm=lm)
|
12 |
|
13 |
search_client = TavilyClient(api_key=os.environ["T_TOKEN"])
|