Jezia commited on
Commit
8e5beee
·
1 Parent(s): b21a955

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -16
app.py CHANGED
@@ -1,29 +1,39 @@
1
  import gradio as gr
2
  from gradio import mix
 
 
3
 
4
  title = "Miniature"
5
  description = "Gradio Demo for a miniature with GPT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
6
 
7
 
8
- examples = [
9
- ['A kid is playing with']
10
- ]
11
 
12
- io = gr.Interface.load("huggingface/keras-io/text-generation")
13
 
 
 
14
 
 
 
 
 
 
 
15
 
16
- def inference(text):
 
 
17
 
18
- return generator(text)
19
-
20
-
 
 
 
 
 
 
 
21
 
22
- gr.Interface(
23
- inference,
24
- [gr.inputs.Textbox(label="Input")],
25
- gr.outputs.Textbox(label="Output"),
26
- examples=examples,
27
- # article=article,
28
- title=title,
29
- description=description).launch(enable_queue=True, cache_examples=True)
 
1
  import gradio as gr
2
  from gradio import mix
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
 
6
  title = "Miniature"
7
  description = "Gradio Demo for a miniature with GPT. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
8
 
9
 
 
 
 
10
 
11
+ tokenizer = AutoTokenizer.from_pretrained("aditi2222/automatic_title_generation")
12
 
13
+ model = AutoModelForSeq2SeqLM.from_pretrained("aditi2222/automatic_title_generation")
14
+
15
 
16
+ def tokenize_data(text):
17
+ # Tokenize the review body
18
+ input_ = str(text) + ' </s>'
19
+ max_len = 120
20
+ # tokenize inputs
21
+ tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')
22
 
23
+ inputs={"input_ids": tokenized_inputs['input_ids'],
24
+ "attention_mask": tokenized_inputs['attention_mask']}
25
+ return inputs
26
 
27
+ def generate_answers(text):
28
+ inputs = tokenize_data(text)
29
+ results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True,
30
+ max_length=120,
31
+ top_k=120,
32
+ top_p=0.98,
33
+ early_stopping=True,
34
+ num_return_sequences=1)
35
+ answer = tokenizer.decode(results[0], skip_special_tokens=True)
36
+ return answer
37
 
38
+ iface = gr.Interface(fn=generate_answers, inputs=['text'], outputs=["text"])
39
+ iface.launch(inline=False, share=True)