Spaces:
Running
Running
import gradio as gr | |
import requests | |
from PIL import Image | |
import io | |
import cv2 | |
import numpy as np | |
fire_count = 0 | |
def plot_one_box(x, img, color=None, label=None, score=None, line_thickness=3): | |
# Plots one bounding box on image img | |
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness | |
color = color | |
c1, c2 = (int(x[0]), int(x[1])), (int(x[2])+int(x[0]), int(x[3])+int(x[1])) | |
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) | |
if label: | |
tf = max(tl - 1, 1) # font thickness | |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 | |
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled | |
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA) | |
pro = f"{score:.3f}" | |
t_size = cv2.getTextSize(pro, 0, fontScale=tl / 3, thickness=tf)[0] | |
c1 = c2 | |
c2 = c1[0] + t_size[0], c1[1] + t_size[1] + 3 | |
cv2.rectangle(img, c1, c2, [0, 255, 255], -1, cv2.LINE_AA) # filled | |
cv2.putText(img, pro, (c1[0], c2[1] - 2), 0, tl / 3, [0, 0, 0], thickness=tf, lineType=cv2.LINE_AA) | |
return img | |
def fire(frame): | |
global fire_count | |
fire_count = fire_count + 1 | |
print("fire_count", fire_count) | |
url = "http://127.0.0.1:8080/fire" | |
file = {'file': open(frame, 'rb')} | |
r = requests.post(url=url, files=file) | |
fire_output = None | |
result = r.json().get('result') | |
object_name = r.json().get('class') | |
box = r.json().get('coordinate') | |
pro = r.json().get('score') | |
# print("\n number: ", plate_number) | |
# print("\n coordinate: ", box) | |
# print("\n score: ", pro) | |
try: | |
image = cv2.imread(frame, cv2.IMREAD_COLOR) | |
if image is None: | |
print('image is null') | |
sys.exit() | |
# image = cv2.resize(image, (1024, 640)) | |
for obj_name in object_name: | |
# print(plate_number) | |
if object_name[obj_name]: | |
if object_name[obj_name] == "fire": | |
image = plot_one_box(box[obj_name], image, label=object_name[obj_name], score=pro[obj_name], color=[0, 255, 0], line_thickness=1) | |
else: | |
image = plot_one_box(box[obj_name], image, label=object_name[obj_name], score=pro[obj_name], color=[0, 0, 255], line_thickness=1) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
fire_output = image.copy() | |
except: | |
pass | |
return fire_output | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# KBY-AI Fire/Smoke Detection SDK Demo | |
We offer SDKs for face recognition, liveness detection(anti-spoofing), ID card recognition and ID document liveness detection. | |
We also specialize in providing outsourcing services with a variety of technical stacks like AI(Computer Vision/Machine Learning), mobile apps, and web apps. | |
##### KYC Verification Demo - https://github.com/kby-ai/KYC-Verification-Demo-Android | |
##### ID Capture Web Demo - https://cap.kby-ai.com | |
""" | |
) | |
with gr.TabItem("Fire/Smoke Detection"): | |
gr.Markdown( | |
""" | |
##### Docker Hub - https://hub.docker.com/r/kbyai/fire-smoke-detection | |
```bash | |
sudo docker pull kbyai/fire-smoke-detection:latest | |
sudo docker run -v ./license.txt:/home/openvino/kby-ai-fire/license.txt -p 8081:8080 -p 9001:9000 kbyai/fire-smoke-detection:latest | |
``` | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
fire_image_input = gr.Image(type='filepath', height=300) | |
gr.Examples(['fire_examples/test1.jpg', 'fire_examples/test2.jpg', 'fire_examples/test3.jpg', 'fire_examples/test4.jpg'], | |
inputs=fire_image_input) | |
fire_confirmation_button = gr.Button("Confirm") | |
with gr.Column(): | |
fire_output = gr.Image(type="numpy") | |
fire_confirmation_button.click(fire, inputs=fire_image_input, outputs=fire_output) | |
gr.HTML('<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fweb.kby-ai.com%2F"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fweb.kby-ai.com%2F&label=VISITORS&countColor=%23263759" /></a>') | |
demo.launch(server_name="0.0.0.0", server_port=7860) |