Spaces:
Running
Running
File size: 5,710 Bytes
f7d745e 4d44034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import sys
sys.path.append('.')
import os
import base64
import json
from ctypes import *
from firesdk import *
import cv2
import numpy as np
from flask import Flask, request, jsonify
licensePath = "license.txt"
license = ""
machineCode = getMachineCode()
print("\nmachineCode: ", machineCode.decode('utf-8'))
# Get a specific environment variable by name
license = os.environ.get("LICENSE")
# Check if the variable exists
if license is not None:
print("Value of LICENSE:")
else:
license = ""
try:
with open(licensePath, 'r') as file:
license = file.read().strip()
except IOError as exc:
print("failed to open license.txt: ", exc.errno)
print("license: ", license)
ret = setActivation(license.encode('utf-8'))
print("\nactivation: ", ret)
ret = initSDK()
print("init: ", ret)
app = Flask(__name__)
def mat_to_bytes(mat):
"""
Convert cv::Mat image data (NumPy array in Python) to raw bytes.
"""
# Encode cv::Mat as PNG bytes
is_success, buffer = cv2.imencode(".png", mat)
if not is_success:
raise ValueError("Failed to encode cv::Mat image")
return buffer.tobytes()
@app.route('/fire', methods=['POST'])
def fire():
result = "None"
object_name = {}
box = {}
pro = {}
file = request.files['file']
try:
image = cv2.imdecode(np.frombuffer(file.read(), np.uint8), cv2.IMREAD_COLOR)
# image = cv2.resize(image, (1024, 640))
except:
result = "Failed to open file"
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
response.status_code = 200
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
img_byte = mat_to_bytes(image)
box_array = (c_int * 1024)() # Assuming a maximum of 256 rectangles
score_array = (c_float * 1024)() # Assuming a maximum of 256 rectangles
label_array = (c_int * 1024)()
cnt = getFireDetection(img_byte, len(img_byte), label_array, box_array, score_array)
rectangles = [
(box_array[i * 4], box_array[i * 4 + 1], box_array[i * 4 + 2], box_array[i * 4 + 3])
for i in range(cnt)]
scores = [score_array[i] for i in range(cnt)]
labels = [label_array[i] for i in range(cnt)]
# print(f"detection number: {cnt}, box: {rectangles}, labels: {labels}, scores: {scores} \n")
if cnt == 0:
result = "Nothing Detected !"
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
response.status_code = 200
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
result = "Fire or Smoke Detected !"
for i in range(cnt):
if labels[i] == 0:
object_name[f"id {i + 1}"] = "fire"
else:
object_name[f"id {i + 1}"] = "smoke"
box[f"id {i + 1}"] = rectangles[i]
pro[f"id {i + 1}"] = scores[i]
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
response.status_code = 200
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
@app.route('/fire_base64', methods=['POST'])
def fire_base64():
result = "None"
object_name = {}
box = {}
pro = {}
content = request.get_json()
try:
imageBase64 = content['base64']
image_data = base64.b64decode(imageBase64)
np_array = np.frombuffer(image_data, np.uint8)
image = cv2.imdecode(np_array, cv2.IMREAD_COLOR)
# image = cv2.resize(image, (1024, 640))
except:
result = "Failed to open file1"
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
response.status_code = 200
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
img_byte = mat_to_bytes(image)
box_array = (c_int * 1024)() # Assuming a maximum of 256 rectangles
score_array = (c_float * 1024)() # Assuming a maximum of 256 rectangles
label_array = (c_int * 1024)()
cnt = getFireDetection(img_byte, len(img_byte), label_array, box_array, score_array)
rectangles = [
(box_array[i * 4], box_array[i * 4 + 1], box_array[i * 4 + 2], box_array[i * 4 + 3])
for i in range(cnt)]
scores = [score_array[i] for i in range(cnt)]
labels = [label_array[i] for i in range(cnt)]
# print(f"detection number: {cnt}, box: {rectangles}, labels: {labels}, scores: {scores} \n")
if cnt == 0:
result = "Nothing Detected !"
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
response.status_code = 200
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
result = "Fire or Smoke Detected !"
for i in range(cnt):
if labels[i] == 0:
object_name[f"id {i + 1}"] = "fire"
else:
object_name[f"id {i + 1}"] = "smoke"
box[f"id {i + 1}"] = rectangles[i]
pro[f"id {i + 1}"] = scores[i]
response = jsonify({"result": result, "class": object_name, "coordinate": box, "score": pro})
response.status_code = 200
response.headers["Content-Type"] = "application/json; charset=utf-8"
return response
if __name__ == '__main__':
port = int(os.environ.get("PORT", 8080))
app.run(host='0.0.0.0', port=port) |