kasim90 commited on
Commit
d074190
·
verified ·
1 Parent(s): 39d5e72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -12
app.py CHANGED
@@ -10,8 +10,8 @@ import spaces
10
  MODEL_NAME = "mistralai/Mistral-7B-v0.1"
11
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
 
13
- torch_dtype = torch.float32
14
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
15
 
16
  # === 2️⃣ LoRA AYARLARI ===
17
  lora_config = LoraConfig(
@@ -21,22 +21,26 @@ lora_config = LoraConfig(
21
  bias="none",
22
  target_modules=["q_proj", "v_proj"],
23
  )
24
- model = get_peft_model(model, lora_config)
25
 
26
  # === 3️⃣ VERİ SETİ ===
27
- dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True)
28
- subset = dataset["train"].shuffle(seed=42).select(range(10000))
29
-
30
  @spaces.GPU
31
- def tokenize_function(examples):
32
- return tokenizer(examples["text"], truncation=True, max_length=512)
 
 
 
 
 
 
 
33
 
34
- tokenized_datasets = subset.map(tokenize_function, batched=True)
35
 
36
  # === 4️⃣ EĞİTİM AYARLARI ===
37
  batch_size = 1
38
  num_epochs = 1
39
- max_steps = (len(tokenized_datasets) // batch_size) * num_epochs
40
 
41
  training_args = TrainingArguments(
42
  output_dir="./mistral_lora",
@@ -50,13 +54,14 @@ training_args = TrainingArguments(
50
  logging_dir="./logs",
51
  logging_steps=10,
52
  optim="adamw_torch",
53
- no_cuda=True,
54
  )
55
 
56
  trainer = Trainer(
57
  model=model,
58
  args=training_args,
59
- train_dataset=tokenized_datasets,
 
60
  )
61
 
62
  @spaces.GPU
 
10
  MODEL_NAME = "mistralai/Mistral-7B-v0.1"
11
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
 
13
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
14
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype, device_map="auto")
15
 
16
  # === 2️⃣ LoRA AYARLARI ===
17
  lora_config = LoraConfig(
 
21
  bias="none",
22
  target_modules=["q_proj", "v_proj"],
23
  )
24
+ model = get_peft_model(model, lora_config).to("cuda" if torch.cuda.is_available() else "cpu")
25
 
26
  # === 3️⃣ VERİ SETİ ===
 
 
 
27
  @spaces.GPU
28
+ def load_and_prepare_dataset():
29
+ dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", trust_remote_code=True)
30
+ subset = dataset["train"].shuffle(seed=42).select(range(10000))
31
+
32
+ def tokenize_function(examples):
33
+ return tokenizer(examples["text"], truncation=True, max_length=512)
34
+
35
+ tokenized_datasets = subset.map(tokenize_function, batched=True)
36
+ return tokenized_datasets.train_test_split(test_size=0.1, seed=42)
37
 
38
+ split_dataset = load_and_prepare_dataset()
39
 
40
  # === 4️⃣ EĞİTİM AYARLARI ===
41
  batch_size = 1
42
  num_epochs = 1
43
+ max_steps = (len(split_dataset["train"]) // batch_size) * num_epochs
44
 
45
  training_args = TrainingArguments(
46
  output_dir="./mistral_lora",
 
54
  logging_dir="./logs",
55
  logging_steps=10,
56
  optim="adamw_torch",
57
+ fp16=torch.cuda.is_available(),
58
  )
59
 
60
  trainer = Trainer(
61
  model=model,
62
  args=training_args,
63
+ train_dataset=split_dataset["train"],
64
+ eval_dataset=split_dataset["test"],
65
  )
66
 
67
  @spaces.GPU