File size: 9,374 Bytes
0aa8067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7871ca4
e737a65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7871ca4
0aa8067
 
 
 
 
 
 
4990331
0aa8067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4990331
0aa8067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c57b86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import json 
import gradio as gr
import os
import requests
from huggingface_hub import AsyncInferenceClient

HF_TOKEN = os.getenv('HF_TOKEN')
api_url = os.getenv('API_URL')
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
client = AsyncInferenceClient(api_url)


system_message = """
Refactor the provided Python code to improve its maintainability and efficiency and reduce complexity. Include the refactored code along with the comments on the changes made for improving the metrics.
"""
title = "Python Refactoring"
description = """
Please give it 3 to 4 minutes for the model to load and Run , consider using Python code with less than 120 lines of code due to GPU constrainst
"""
css = """.toast-wrap { display: none !important } """
examples=[["""  
import pandas as pd
import re
import ast
from code_bert_score import score
import numpy as np
def preprocess_code(source_text):
   
    def remove_comments_and_docstrings(source_code):
        source_code = re.sub(r'#.*', '', source_code)
        source_code = re.sub(r'(\'\'\'(.*?)\'\'\'|\"\"\"(.*?)\"\"\")', '', source_code, flags=re.DOTALL)
        return source_code
    pattern = r"```python\s+(.+?)\s+```"
    matches = re.findall(pattern, source_text, re.DOTALL)
    code_to_process = '\n'.join(matches) if matches else source_text
    cleaned_code = remove_comments_and_docstrings(code_to_process)
    return cleaned_code
def evaluate_dataframe(df):
   
    results = {'P': [], 'R': [], 'F1': [], 'F3': []}
    for index, row in df.iterrows():
        try:
            cands = [preprocess_code(row['generated_text'])]
            refs = [preprocess_code(row['output'])]
            P, R, F1, F3 = score(cands, refs, lang='python')
            results['P'].append(P[0])
            results['R'].append(R[0])
            results['F1'].append(F1[0])
            results['F3'].append(F3[0])
        except Exception as e:
            print(f"Error processing row {index}: {e}")
            for key in results.keys():
                results[key].append(None)
    df_metrics = pd.DataFrame(results)
    return df_metrics
def evaluate_dataframe_multiple_runs(df, runs=3):
    
    all_results = []
    for run in range(runs):
        df_metrics = evaluate_dataframe(df)
        all_results.append(df_metrics)
    # Calculate mean and std deviation of metrics across runs
    df_metrics_mean = pd.concat(all_results).groupby(level=0).mean()
    df_metrics_std = pd.concat(all_results).groupby(level=0).std()
    return df_metrics_mean, df_metrics_std
""" ] ,
                         ["""
def analyze_sales_data(sales_records):
    active_sales = filter(lambda record: record['status'] == 'active', sales_records)
    sales_by_category = {}
    for record in active_sales:
        category = record['category']
        total_sales = record['units_sold'] * record['price_per_unit']
        if category not in sales_by_category:
            sales_by_category[category] = {'total_sales': 0, 'total_units': 0}
        sales_by_category[category]['total_sales'] += total_sales
        sales_by_category[category]['total_units'] += record['units_sold']
    average_sales_data = []
    for category, data in sales_by_category.items():
        average_sales = data['total_sales'] / data['total_units']
        sales_by_category[category]['average_sales'] = average_sales
        average_sales_data.append((category, average_sales))
    average_sales_data.sort(key=lambda x: x[1], reverse=True)
    for rank, (category, _) in enumerate(average_sales_data, start=1):
        sales_by_category[category]['rank'] = rank
    return sales_by_category
"""]]

# Note: We have removed default system prompt as requested by the paper authors [Dated: 13/Oct/2023]
# Prompting style for Llama2 without using system prompt
# <s>[INST] {{ user_msg_1 }} [/INST] {{ model_answer_1 }} </s><s>[INST] {{ user_msg_2 }} [/INST]


# Stream text - stream tokens with InferenceClient from TGI
async def predict(message, chatbot, system_prompt="", temperature=0.1, max_new_tokens=4096, top_p=0.6, repetition_penalty=1.1,):
    
    if system_prompt != "":
        input_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n "
    else:
        input_prompt = f"<s>[INST] "
        
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s>[INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    partial_message = ""
    async for token in await client.text_generation(prompt=input_prompt, 
                                    max_new_tokens=max_new_tokens, 
                                    stream=True, 
                                    best_of=1, 
                                    temperature=temperature, 
                                    top_p=top_p, 
                                    do_sample=True, 
                                    repetition_penalty=repetition_penalty):
        partial_message = partial_message + token 
        yield partial_message
        

# No Stream - batch produce tokens using TGI inference endpoint
def predict_batch(message, chatbot, system_prompt="", temperature=0.1, max_new_tokens=4096, top_p=0.6, repetition_penalty=1.1):
    
    if system_prompt != "":
        input_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n "
    else:
        input_prompt = f"<s>[INST] "
        
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s>[INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "
    print(f"input_prompt - {input_prompt}")

    data = {
        "inputs": input_prompt,
        "parameters": {
            "max_new_tokens":max_new_tokens,
            "temperature":temperature,
            "top_p":top_p,
            "repetition_penalty":repetition_penalty, 
            "do_sample":True,
        },
    }

    response = requests.post(api_url, headers=headers,  json=data ) #auth=('hf', hf_token)) data=json.dumps(data),
    
    if response.status_code == 200:  # check if the request was successful
        try:
            json_obj = response.json()
            if 'generated_text' in json_obj[0] and len(json_obj[0]['generated_text']) > 0:
                return json_obj[0]['generated_text']
            elif 'error' in json_obj[0]:
                return json_obj[0]['error'] + ' Please refresh and try again with smaller input prompt'
            else:
                print(f"Unexpected response: {json_obj[0]}")
        except json.JSONDecodeError:
            print(f"Failed to decode response as JSON: {response.text}")
    else:
        print(f"Request failed with status code {response.status_code}")



def vote(data: gr.LikeData):
    if data.liked:
        print("You upvoted this response: " + data.value)
    else:
        print("You downvoted this response: " + data.value)
        

additional_inputs=[
    gr.Textbox("", label="Optional system prompt"),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=4096,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.6,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

chatbot_stream = gr.Chatbot(avatar_images=('user.png', 'bot2.png'),bubble_full_width = False)
chatbot_batch = gr.Chatbot(avatar_images=('user1.png', 'bot1.png'),bubble_full_width = False)
chat_interface_stream = gr.ChatInterface(predict, 
                 title=title, 
                 description=description, 
                 textbox=gr.Textbox(),
                 chatbot=chatbot_stream,
                 css=css, 
                 examples=examples, 
                 #cache_examples=True, 
                 additional_inputs=additional_inputs,) 
chat_interface_batch=gr.ChatInterface(predict_batch, 
                 title=title, 
                 description=description, 
                 textbox=gr.Textbox(),
                 chatbot=chatbot_batch,
                 css=css, 
                 examples=examples, 
                 #cache_examples=True, 
                 additional_inputs=additional_inputs,) 

# Gradio Demo 
with gr.Blocks() as demo:

    with gr.Tab("Streaming"):
        # streaming chatbot
        chatbot_stream.like(vote, None, None)
        chat_interface_stream.render()

    with gr.Tab("Batch"):
        # non-streaming chatbot
        chatbot_batch.like(vote, None, None)
        chat_interface_batch.render()
        
demo.queue(max_size=2).launch()