# prompt: create a sreamlit app on finetuned llm import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load Base Gemma Model (Required for Adapter) base_model_path = "google/gemma-3-1b-it" model = AutoModelForCausalLM.from_pretrained( base_model_path, load_in_4bit=True, # Efficient memory usage device_map="auto" # Automatically maps to GPU if available ) # Load LoRA Adapter model = PeftModel.from_pretrained(model, "fine_tuned_gemma_3_1b/") # Load the fine-tuned model and tokenizer # model_path = "fine_tuned_gemma_3_1b" # Replace with the actual path to your model directory tokenizer = AutoTokenizer.from_pretrained(model_path) # model = AutoModelForCausalLM.from_pretrained(model_path) # Create a text generation pipeline text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer) st.title("Fine-tuned Gemma 3.1B LLM") # Create a text input box for the user user_input = st.text_area("Enter your prompt:") if st.button("Generate Text"): if user_input: # Generate text based on user input output = text_generator(user_input, max_length=150, num_return_sequences=1) generated_text = output[0]['generated_text'] # Display the generated text st.write("Generated Text:") st.write(generated_text) else: st.warning("Please enter a prompt.")