|
# Language-driven Semantic Segmentation (LSeg) |
|
The repo contains official PyTorch Implementation of paper [Language-driven Semantic Segmentation](https://arxiv.org/abs/2201.03546). |
|
|
|
ICLR 2022 |
|
|
|
#### Authors: |
|
* [Boyi Li](https://sites.google.com/site/boyilics/home) |
|
* [Kilian Q. Weinberger](http://kilian.cs.cornell.edu/index.html) |
|
* [Serge Belongie](https://scholar.google.com/citations?user=ORr4XJYAAAAJ&hl=zh-CN) |
|
* [Vladlen Koltun](http://vladlen.info/) |
|
* [Rene Ranftl](https://scholar.google.at/citations?user=cwKg158AAAAJ&hl=de) |
|
|
|
|
|
### Overview |
|
|
|
|
|
We present LSeg, a novel model for language-driven semantic image segmentation. LSeg uses a text encoder to compute embeddings of descriptive input labels (e.g., ''grass'' or 'building'') together with a transformer-based image encoder that computes dense per-pixel embeddings of the input image. The image encoder is trained with a contrastive objective to align pixel embeddings to the text embedding of the corresponding semantic class. The text embeddings provide a flexible label representation in which semantically similar labels map to similar regions in the embedding space (e.g., ''cat'' and ''furry''). This allows LSeg to generalize to previously unseen categories at test time, without retraining or even requiring a single additional training sample. We demonstrate that our approach achieves highly competitive zero-shot performance compared to existing zero- and few-shot semantic segmentation methods, and even matches the accuracy of traditional segmentation algorithms when a fixed label set is provided. |
|
|
|
Please check our [Video Demo (4k)](https://www.youtube.com/watch?v=bmU75rsmv6s) to further showcase the capabilities of LSeg. |
|
|
|
## Usage |
|
### Installation |
|
Option 1: |
|
|
|
``` pip install -r requirements.txt ``` |
|
|
|
Option 2: |
|
``` |
|
conda install ipython |
|
pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 |
|
pip install git+https://github.com/zhanghang1989/PyTorch-Encoding/ |
|
pip install pytorch-lightning==1.3.5 |
|
pip install opencv-python |
|
pip install imageio |
|
pip install ftfy regex tqdm |
|
pip install git+https://github.com/openai/CLIP.git |
|
pip install altair |
|
pip install streamlit |
|
pip install --upgrade protobuf |
|
pip install timm |
|
pip install tensorboardX |
|
pip install matplotlib |
|
pip install test-tube |
|
pip install wandb |
|
``` |
|
|
|
### Data Preparation |
|
By default, for training, testing and demo, we use [ADE20k](https://groups.csail.mit.edu/vision/datasets/ADE20K/). |
|
|
|
``` |
|
python prepare_ade20k.py |
|
unzip ../datasets/ADEChallengeData2016.zip |
|
``` |
|
|
|
Note: for demo, if you want to use random inputs, you can ignore data loading and comment the code at [link](https://github.com/isl-org/lang-seg/blob/main/modules/lseg_module.py#L55). |
|
|
|
|
|
### π» Try demo now |
|
|
|
#### Download Demo Model |
|
<table> |
|
<thead> |
|
<tr style="text-align: right;"> |
|
<th>name</th> |
|
<th>backbone</th> |
|
<th>text encoder</th> |
|
<th>url</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>Model for demo</td> |
|
<th>ViT-L/16</th> |
|
<th>CLIP ViT-B/32</th> |
|
<td><a href="https://drive.google.com/file/d/1FTuHY1xPUkM-5gaDtMfgCl3D0gR89WV7/view?usp=sharing">download</a></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
#### π Option 1: Running interactive app |
|
Download the model for demo and put it under folder `checkpoints` as `checkpoints/demo_e200.ckpt`. |
|
|
|
Then ``` streamlit run lseg_app.py ``` |
|
|
|
#### π Option 2: Jupyter Notebook |
|
Download the model for demo and put it under folder `checkpoints` as `checkpoints/demo_e200.ckpt`. |
|
|
|
Then follow [lseg_demo.ipynb](https://github.com/isl-org/lang-seg/blob/main/lseg_demo.ipynb) to play around with LSeg. Enjoy! |
|
|
|
|
|
|
|
### Training and Testing Example |
|
Training: Backbone = ViT-L/16, Text Encoder from CLIP ViT-B/32 |
|
|
|
``` bash train.sh ``` |
|
|
|
Testing: Backbone = ViT-L/16, Text Encoder from CLIP ViT-B/32 |
|
|
|
``` bash test.sh ``` |
|
|
|
### Zero-shot Experiments |
|
#### Data Preparation |
|
Please follow [HSNet](https://github.com/juhongm999/hsnet) and put all dataset in `data/Dataset_HSN` |
|
|
|
#### Pascal-5i |
|
``` |
|
for fold in 0 1 2 3; do |
|
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset pascal \ |
|
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold ${fold} --nshot 0 \ |
|
--weights checkpoints/pascal_fold${fold}.ckpt |
|
done |
|
``` |
|
#### COCO-20i |
|
``` |
|
for fold in 0 1 2 3; do |
|
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset coco \ |
|
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold ${fold} --nshot 0 \ |
|
--weights checkpoints/pascal_fold${fold}.ckpt |
|
done |
|
``` |
|
#### FSS |
|
``` |
|
python -u test_lseg_zs.py --backbone clip_vitl16_384 --module clipseg_DPT_test_v2 --dataset fss \ |
|
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold 0 --nshot 0 \ |
|
--weights checkpoints/fss_l16.ckpt |
|
``` |
|
|
|
``` |
|
python -u test_lseg_zs.py --backbone clip_resnet101 --module clipseg_DPT_test_v2 --dataset fss \ |
|
--widehead --no-scaleinv --arch_option 0 --ignore_index 255 --fold 0 --nshot 0 \ |
|
--weights checkpoints/fss_rn101.ckpt |
|
``` |
|
|
|
#### Model Zoo |
|
<table> |
|
<thead> |
|
<tr style="text-align: right;"> |
|
<th>dataset</th> |
|
<th>fold</th> |
|
<th>backbone</th> |
|
<th>text encoder</th> |
|
<th>performance</th> |
|
<th>url</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<th>pascal</th> |
|
<td>0</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>52.8</th> |
|
<td><a href="https://drive.google.com/file/d/1y4z4_yNGlZtn6osaeN4ZjMs6c0vr0F3m/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>pascal</th> |
|
<td>1</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>53.8</th> |
|
<td><a href="https://drive.google.com/file/d/1UZzN8kWkH-G8v6P8xcBXEHRZlQKPRxrX/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>pascal</th> |
|
<td>2</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>44.4</th> |
|
<td><a href="https://drive.google.com/file/d/1KCq1JphSMvj8X78bkWbdNIFm5zYzLTMX/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>pascal</th> |
|
<td>3</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>38.5</th> |
|
<td><a href="https://drive.google.com/file/d/1A_fllOJqyBg0ZTJcm85Cn0NAcwQbXnhl/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>coco</th> |
|
<td>0</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>22.1</th> |
|
<td><a href="https://drive.google.com/file/d/1nSYO3XtAv4mzWi4x-MFUfk04cpBKJT38/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>coco</th> |
|
<td>1</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>25.1</th> |
|
<td><a href="https://drive.google.com/file/d/1w0vz3yjEi_ZLgECRrgtoLxEHugyJkrs5/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>coco</th> |
|
<td>2</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>24.9</th> |
|
<td><a href="https://drive.google.com/file/d/1wmHtmJLdta18XuWQv6oX9llidCll_HrD/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>coco</th> |
|
<td>3</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>21.5</th> |
|
<td><a href="https://drive.google.com/file/d/1dliBUSOog7taJxMmb9cdefKH4XOKChVJ/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>fss</th> |
|
<td>-</td> |
|
<th>ResNet101</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>84.7</th> |
|
<td><a href="https://drive.google.com/file/d/1UIj49Wp1mAopPub5M6O4WW-Z79VB1bhw/view?usp=sharing">download</a></td> |
|
</tr> |
|
<tr> |
|
<th>fss</th> |
|
<td>-</td> |
|
<th>ViT-L/16</th> |
|
<th>CLIP ViT-B/32</th> |
|
<th>87.8</th> |
|
<td><a href="https://drive.google.com/file/d/1Nplkc_JsHIS55d--K2vonOOC3HrppzYy/view?usp=sharing">download</a></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
If you find this repo useful, please cite: |
|
``` |
|
@inproceedings{ |
|
li2022languagedriven, |
|
title={Language-driven Semantic Segmentation}, |
|
author={Boyi Li and Kilian Q Weinberger and Serge Belongie and Vladlen Koltun and Rene Ranftl}, |
|
booktitle={International Conference on Learning Representations}, |
|
year={2022}, |
|
url={https://openreview.net/forum?id=RriDjddCLN} |
|
} |
|
``` |
|
|
|
## Acknowledgement |
|
Thanks to the code base from [DPT](https://github.com/isl-org/DPT), [Pytorch_lightning](https://github.com/PyTorchLightning/pytorch-lightning), [CLIP](https://github.com/openai/CLIP), [Pytorch Encoding](https://github.com/zhanghang1989/PyTorch-Encoding), [Streamlit](https://streamlit.io/), [Wandb](https://wandb.ai/site) |
|
|