File size: 4,494 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import re
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from argparse import ArgumentParser
import pytorch_lightning as pl
from .lsegmentation_module_zs import LSegmentationModuleZS
from .models.lseg_net_zs import LSegNetZS, LSegRNNetZS
from encoding.models.sseg.base import up_kwargs
import os
import clip
import numpy as np
from scipy import signal
import glob
from PIL import Image
import matplotlib.pyplot as plt
import pandas as pd


class LSegModuleZS(LSegmentationModuleZS):
    def __init__(self, data_path, dataset, batch_size, base_lr, max_epochs, **kwargs):
        super(LSegModuleZS, self).__init__(
            data_path, dataset, batch_size, base_lr, max_epochs, **kwargs
        )
        label_list = self.get_labels(dataset)
        self.len_dataloader = len(label_list)

        # print(kwargs)
        if kwargs["use_pretrained"] in ['False', False]:
            use_pretrained = False
        elif kwargs["use_pretrained"] in ['True', True]:
            use_pretrained = True

        if kwargs["backbone"] in ["clip_resnet101"]:
            self.net = LSegRNNetZS(
                label_list=label_list,
                backbone=kwargs["backbone"],
                features=kwargs["num_features"],
                aux=kwargs["aux"],
                use_pretrained=use_pretrained,
                arch_option=kwargs["arch_option"],
                block_depth=kwargs["block_depth"],
                activation=kwargs["activation"],
            )
        else:
            self.net = LSegNetZS(
                label_list=label_list,
                backbone=kwargs["backbone"],
                features=kwargs["num_features"],
                aux=kwargs["aux"],
                use_pretrained=use_pretrained,
                arch_option=kwargs["arch_option"],
                block_depth=kwargs["block_depth"],
                activation=kwargs["activation"],
            )

    def get_labels(self, dataset):
        labels = []
        path = 'label_files/fewshot_{}.txt'.format(dataset)
        assert os.path.exists(path), '*** Error : {} not exist !!!'.format(path)
        f = open(path, 'r') 
        lines = f.readlines()      
        for line in lines: 
            label = line.strip()
            labels.append(label)
        f.close()
        print(labels)
        return labels

    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = LSegmentationModuleZS.add_model_specific_args(parent_parser)
        parser = ArgumentParser(parents=[parser])

        parser.add_argument(
            "--backbone",
            type=str,
            default="vitb16_384",
            help="backbone network",
        )

        parser.add_argument(
            "--num_features",
            type=int,
            default=256,
            help="number of featurs that go from encoder to decoder",
        )

        parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate")

        parser.add_argument(
            "--finetune_weights", type=str, help="load weights to finetune from"
        )

        parser.add_argument(
            "--no-scaleinv",
            default=True,
            action="store_false",
            help="turn off scaleinv layers",
        )

        parser.add_argument(
            "--no-batchnorm",
            default=False,
            action="store_true",
            help="turn off batchnorm",
        )

        parser.add_argument(
            "--widehead", default=False, action="store_true", help="wider output head"
        )

        parser.add_argument(
            "--widehead_hr",
            default=False,
            action="store_true",
            help="wider output head",
        )

        parser.add_argument(
            "--use_pretrained",
            type=str,
            default="True",
            help="whether use the default model to intialize the model",
        )

        parser.add_argument(
            "--arch_option",
            type=int,
            default=0,
            help="which kind of architecture to be used",
        )

        parser.add_argument(
            "--block_depth",
            type=int,
            default=0,
            help="how many blocks should be used",
        )

        parser.add_argument(
            "--activation",
            choices=['relu', 'lrelu', 'tanh'],
            default="relu",
            help="use which activation to activate the block",
        )

        return parser