Spaces:
Runtime error
Runtime error
File size: 4,622 Bytes
80d002f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# main.py
import gradio as gr
import numpy as np
import random
import torch
import os
from diffusers import SanaSprintPipeline
from PIL import Image
# Initialize device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load models
pipe = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
torch_dtype=dtype
)
pipe2 = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
torch_dtype=dtype
)
pipe.to(device)
pipe2.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def generate_image(prompt, model_size, seed, randomize_seed, width, height, guidance_scale, steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
selected_pipe = pipe if model_size == "0.6B" else pipe2
result = selected_pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=steps,
width=width,
height=height,
generator=generator,
output_type="pil"
)
image = result.images[0]
filename = f"output_{seed}.png"
image.save(filename)
return image, filename, seed
css = """
#col-container {
margin: 0 auto;
max-width: 800px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# π Sana Sprint Image Generator")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Enter Prompt",
placeholder="A surreal landscape with...",
lines=3
)
model_size = gr.Radio(
label="Model Size",
choices=["0.6B", "1.6B"],
value="1.6B"
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
value=42,
step=1
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
value=1024,
step=32
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
value=1024,
step=32
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=15.0,
value=4.5,
step=0.1
)
steps = gr.Slider(
label="Inference Steps",
minimum=1,
maximum=50,
value=2,
step=1
)
generate_btn = gr.Button("Generate Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Generated Image")
file_output = gr.File(label="Download Image")
seed_info = gr.Textbox(label="Used Seed")
gr.Examples(
examples=[
["a tiny astronaut hatching from an egg on the moon", "1.6B"],
["πΆ Wearing πΆ flying on the π", "1.6B"],
["an anime illustration of a wiener schnitzel", "0.6B"]
],
inputs=[prompt, model_size],
outputs=[output_image, file_output, seed_info],
fn=generate_image,
cache_examples=True
)
generate_btn.click(
fn=generate_image,
inputs=[prompt, model_size, seed, randomize_seed, width, height, guidance_scale, steps],
outputs=[output_image, file_output, seed_info]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0") |