Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,226 Bytes
a3e05e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import yaml
import logging
import time
import os
import torch
from modules.audio_detokenizer.flow_matching.ode_wrapper import StreamingODEWrapperForPrefix
from modules.audio_detokenizer.flow_matching.model import DiTPrefix
from modules.audio_detokenizer.flow_matching.scheduler import StreamingFlowMatchingScheduler
logger = logging.getLogger(__name__)
class StreamingSemanticFMWrapper:
def __init__(self, speech_model: DiTPrefix, max_kv_cache_tokens=900, max_prompt_chunk=2,
use_cfg=True, use_cfg_rescale=True, cfg_init=1.5, cfg_scale=7.5, cfg_schedule="linear", cfg_token_id=0,
normalize_mel=False, mel_mean=None, mel_std=None, device: torch.device = torch.device("cpu")) -> None:
self.dtype = torch.bfloat16
self.speech_model = speech_model.to(device).to(self.dtype)
self.speech_model = self.speech_model.eval()
self.device = device
self.normalize_mel = normalize_mel
self.mel_mean = mel_mean
self.mel_std = mel_std
self.use_cfg = use_cfg
self.use_cfg_rescale = use_cfg_rescale
self.cfg_init = cfg_init
self.cfg_scale = cfg_scale
self.cfg_schedule = cfg_schedule
self.incremental_state = {}
self.condition_cache = {"previous_seqlen": 0}
logger.info(f">>> SemanticFMWrapper initialized with use_cfg={use_cfg}, use_cfg_rescale={use_cfg_rescale}, cfg_init={cfg_init}, cfg_scale={cfg_scale}, cfg_schedule={cfg_schedule}")
self.scheduler = StreamingFlowMatchingScheduler()
self.ode_wrapper = StreamingODEWrapperForPrefix(net=self.speech_model, x_mask=None, x_cond=None,
use_cfg=use_cfg, use_cfg_rescale=use_cfg_rescale, cfg_init=cfg_init, cfg_scale=cfg_scale, cfg_schedule=cfg_schedule, cfg_token_id=cfg_token_id)
self.max_kv_cache_tokens = max_kv_cache_tokens
self.max_prompt_chunk = max_prompt_chunk
self.reserve_kv_cache_tokens = 0
@torch.inference_mode()
def infer_chunk(self, xt_chunk, semantic_tokens_chunk, start_position_id,
cache = None, look_ahead_tokens=0,
ode_steps=15, verbose=False, ode_solver="neural_ode_euler"):
"""
semantic_tokens: [T_1], torch.LongTensor
xt: [T_2, 80], torch.Tensor, DO NOT normalize it outside
ode_steps: int, number of ode steps, default 15
verbose: bool, default False
ode_solver: str, ode solver, expected in ("neural_ode_euler", "naive_euler"), default "neural_ode_euler"
"""
bs = 1
self.scheduler.set_timesteps(ode_steps)
semantic_tokens_chunk = semantic_tokens_chunk.unsqueeze(0).to(self.device)
xt_chunk = xt_chunk.unsqueeze(0).to(self.device).to(self.dtype)
t_span = torch.linspace(0, 1, self.scheduler.timesteps)
x_mask = torch.zeros(bs, xt_chunk.shape[1], device=self.device).bool()
cache_ret = self.ode_wrapper.set_conditions(x_mask=x_mask, x_cond=semantic_tokens_chunk, start_position_id=start_position_id, cache=self.condition_cache)
if verbose:
t_start = time.time()
if ode_solver == "neural_ode_euler":
x_t = self.scheduler.sample_by_neuralode(self.ode_wrapper, time_steps=t_span, xt=xt_chunk, verbose=False)
elif ode_solver == "naive_euler":
x_t = self.scheduler.sample(ode_wrapper=self.ode_wrapper, time_steps=t_span, xt=xt_chunk, verbose=False)
else:
raise NotImplementedError("ode_solver should be in ('neural_ode_euler', 'naive_euler')")
if look_ahead_tokens > 0:
semantic_tokens_left = semantic_tokens_chunk.view(-1)[-look_ahead_tokens:]
cache["semantic_token"] = semantic_tokens_left
x_t_ret = x_t[:, :-look_ahead_tokens, :]
else:
x_t_ret = x_t
if look_ahead_tokens > 0:
x_mask = torch.zeros(bs, xt_chunk.shape[1] - look_ahead_tokens, device=self.device).bool()
self.condition_cache = self.ode_wrapper.set_conditions(x_mask=x_mask, x_cond=semantic_tokens_chunk[:, :-look_ahead_tokens], start_position_id=start_position_id, cache=self.condition_cache)
self.ode_wrapper(torch.Tensor([0.999]).to(x_t_ret.device), x_t_ret)
else:
self.condition_cache = cache_ret
if verbose:
t_end = time.time()
logger.info(f"[ODE Chunk] Time cost: {t_end - t_start}")
if self.normalize_mel:
x_t_ret = x_t_ret * self.mel_std + self.mel_mean
return x_t_ret.squeeze(0)
@torch.inference_mode()
def infer_mel(self, semantic_tokens, ode_steps=15, chunk_size=150, verbose=False, ode_solver="neural_ode_euler"):
"""
semantic_tokens: [T_1], torch.LongTensor
prompt: [T_2, 80], torch.Tensor, DO NOT normalize it outside
prompt_semantic_tokens, [T_2], torch.LongTensor
ode_steps: int, number of ode steps, default 15
verbose: bool, default False
ode_solver: str, ode solver, expected in ("neural_ode_euler", "naive_euler"), default "neural_ode_euler"
"""
assert semantic_tokens.dim() == 1
x_t = torch.randn(semantic_tokens.shape[0], 80).to(self.device).to(self.dtype)
seq_len = semantic_tokens.shape[0]
num_chunks = seq_len // chunk_size
if seq_len % chunk_size != 0:
num_chunks += 1
x_pred_collect = []
if verbose:
t_start = time.time()
for chunk_id in range(num_chunks):
start = chunk_id * chunk_size
end = min(start + chunk_size, seq_len)
semantic_tokens_chunk = semantic_tokens[start:end]
x_t_chunk = x_t[start:end, :]
x_pred = self.infer_chunk(xt_chunk=x_t_chunk, semantic_tokens_chunk=semantic_tokens_chunk, start_position_id=self.start_position_id,
ode_steps=ode_steps, verbose=verbose, ode_solver=ode_solver)
self.start_position_id += end - start
self.update_incremental_state()
x_pred_collect.append(x_pred)
if verbose:
t_end = time.time()
logger.info(f"[ODE] Time cost: {t_end - t_start}")
x_pred = torch.cat(x_pred_collect, dim=0)
return x_pred
def clear_all_states(self):
self.start_position_id = 0
self.condition_cache = {"previous_seqlen": 0}
self.ode_wrapper.clear_all_states()
def state_dict(self):
return {
"start_position_id": self.start_position_id,
"ode_wrapper": self.ode_wrapper.state_dict(),
"condition_cache": self.condition_cache
}
def load_state_dict(self, state_dict):
if state_dict is not None:
self.start_position_id = state_dict["start_position_id"]
self.ode_wrapper.load_state_dict(state_dict["ode_wrapper"])
self.condition_cache = state_dict["condition_cache"]
def update_incremental_state(self):
self.ode_wrapper.update_incremental_state(reserve_kv_cache_tokens=0, max_kv_cache_tokens=self.max_kv_cache_tokens, condition_cache=self.condition_cache)
@torch.inference_mode()
def prefill(self, mel, semantic_token, chunk_size=150, verbose=False):
"""
mel: [T, 80], torch.Tensor
semantic_token: [T], torch.LongTensor
chunk_size: int, default 150
"""
assert mel.dim() == 2
assert semantic_token.dim() == 1
assert semantic_token.shape[0] == mel.shape[0], "Semantic token and mel shape mismatch"
seq_len = mel.shape[0]
num_chunks = min(seq_len // chunk_size, self.max_prompt_chunk)
start_pos = seq_len - num_chunks * chunk_size
res_mel = mel[:start_pos, :]
res_semantic_token = semantic_token[:start_pos]
self.prefill_chunk(res_mel, res_semantic_token, start_position_id=self.start_position_id)
self.start_position_id += start_pos
self.update_incremental_state()
self.reserve_kv_cache_tokens += self.ode_wrapper.kv_cache_tokens
if verbose:
logger.info("Prefilling prompt with {} chunks".format(num_chunks))
start_time = time.time()
for chunk_id in range(num_chunks):
start = start_pos + chunk_id * chunk_size
end = start + chunk_size
mel_chunk = mel[start:end, :]
semantic_token_chunk = semantic_token[start:end]
self.prefill_chunk(mel_chunk, semantic_token_chunk, start_position_id=self.start_position_id)
self.start_position_id += end - start
self.update_incremental_state()
self.reserve_kv_cache_tokens += self.ode_wrapper.kv_cache_tokens
if verbose:
logger.info("Prefilling done in {:.2f} seconds".format(time.time() - start_time))
def prefill_chunk(self, mel_chunk, semantic_tokens_chunk, start_position_id=0):
"""
mel_chunk: [T, 80], torch.Tensor, T is the chunk size
semantic_tokens_chunk: [T], torch.LongTensor
start_position_id: int, default 0
"""
bs = 1
semantic_tokens_chunk = semantic_tokens_chunk.unsqueeze(0).to(self.device)
mel_chunk = mel_chunk.unsqueeze(0).to(self.device).to(self.dtype)
if self.normalize_mel:
mel_chunk = (mel_chunk - self.mel_mean) / self.mel_std
x_mask = torch.zeros(bs, mel_chunk.shape[1], device=self.device).bool()
self.condition_cache = self.ode_wrapper.set_conditions(x_mask=x_mask, x_cond=semantic_tokens_chunk, start_position_id=start_position_id, cache=self.condition_cache)
x_t = torch.Tensor([0.999]).to(self.device)
self.ode_wrapper(x_t, mel_chunk)
@classmethod
def from_pretrained(cls, model_config, ckpt_path, device, max_prompt_chunk=2, max_kv_cache_tokens=900, use_cfg=True, use_cfg_rescale=True, cfg_init=1.5, cfg_scale=7.5, cfg_schedule="linear"):
# open yaml file
with open(model_config, 'r') as f:
config = yaml.safe_load(f)
model_config = config["model"]["dit"]
dit = DiTPrefix(
input_size=model_config["input_size"],
semantic_vocab_size=model_config["semantic_vocab_size"] + 1,
hidden_size=model_config["hidden_size"],
depth=model_config["depth"],
num_heads=model_config["num_heads"],
mlp_ratio=model_config["mlp_ratio"],
ffn_type=model_config.get("ffn_type", "conv1d_conv1d"),
ffn_gated_glu=model_config.get("ffn_gated_glu", True),
ffn_act_layer=model_config.get("ffn_act_layer", "gelu"),
ffn_conv_kernel_size=model_config.get("ffn_conv_kernel_size", 5),
use_rope=model_config.get("use_rope", False),
rope_params=model_config.get("rope_params", { "max_position_embeddings": 4096,"rope_base": 10000,"rope_interpolation_factor": 1 }),
position_embedding_type=model_config["position_embedding_type"],
max_seq_len=model_config["max_seq_len"],
output_size=model_config["input_size"],
prompt_cfg_dropout=0
)
cfg_semantic_token_id = model_config["semantic_vocab_size"]
# load state_dict
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)["state_dict"]
speech_model_params = {k.replace("speech_model.", ""): v for k, v in state_dict.items() if "speech_model" in k}
dit.load_state_dict(speech_model_params, strict=True)
logger.info(f">>> Loaded checkpoint from {ckpt_path}")
return cls(speech_model=dit, device=device, normalize_mel=config["normalize_mel"], mel_mean=config["mel_mean"], mel_std=config["mel_std"], max_prompt_chunk=max_prompt_chunk, max_kv_cache_tokens=max_kv_cache_tokens,
use_cfg=use_cfg, use_cfg_rescale=use_cfg_rescale, cfg_init=cfg_init, cfg_scale=cfg_scale, cfg_schedule=cfg_schedule, cfg_token_id=cfg_semantic_token_id)
|