File size: 11,564 Bytes
a3e05e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

import torch

from modules.audio_detokenizer.bigvgan_wrapper import BigVGANWrapper
from modules.audio_detokenizer.semantic_fm_prefix_streaming import StreamingSemanticFMWrapper


class PrefixStreamingFlowMatchingDetokenizer:
    def __init__(self, vocoder: BigVGANWrapper, fm: StreamingSemanticFMWrapper, look_ahead_tokens: int = 0) -> None:
        self.dtype = torch.bfloat16

        print("Currently using bfloat16 for PrefixFlowMatchingDetokenizer")

        self.vocoder = vocoder
        self.vocoder.to_dtype(self.dtype)
        
        self.semantic_fm = fm

        # initialize mel_spec
        self.max_pos_size = 4096
        self.is_timbre_semantic_token = False
        self.pre_mel = None
        self.frame_size = 480 # how many samples in a frame
        self.pre_wav = None
        self.state_dict_backup = None
        self.hamming_window_cache = {}
        self.previous_chunk_left = None
        self.look_ahead_tokens = look_ahead_tokens

        self.clear_states()

        
    @classmethod
    def from_pretrained(cls, vocoder_config, vocoder_ckpt, fm_config, fm_ckpt, device, 
                        look_ahead_tokens=0,
                        max_prompt_chunk=2, max_kv_cache_tokens=900,
                        use_cfg=False, use_cfg_rescale=True, cfg_init=1.5, cfg_scale=7.5, cfg_schedule="linear"):
        bigvgan = BigVGANWrapper.from_pretrained(vocoder_config, vocoder_ckpt, device)
        semantic_fm = StreamingSemanticFMWrapper.from_pretrained(fm_config, fm_ckpt, device, max_prompt_chunk=max_prompt_chunk, max_kv_cache_tokens=max_kv_cache_tokens,
                                                                 use_cfg=use_cfg, cfg_scale=cfg_scale, use_cfg_rescale=use_cfg_rescale, cfg_init=cfg_init, cfg_schedule=cfg_schedule)        
        return cls(bigvgan, semantic_fm, look_ahead_tokens=look_ahead_tokens)
    
    @torch.inference_mode()
    def prefill(self, timbre_speech, timbre_semantic_token, chunk_size: int, timbre_mel=None):
        """
            Arguments:
                timbre_speech: torch.Tensor, shape [B, N_speech_24k]
                timbre_semantic_token: torch.Tensor, shape [B, N]
                chunk_size: int, chunk size for prefilling
                timbre_mel: torch.Tensor, shape [B, N, 80], optional, if not None, use this mel spectrogram instead of extracting from timbre_speech
        """
        if timbre_mel is None:
            assert timbre_speech is not None, "timbre_speech should not be None if timbre_mel is not None"
            assert len(timbre_semantic_token.shape) == 2 and len(timbre_speech.shape) == 2 and chunk_size > 0
            assert timbre_speech.shape[0] == 1 and timbre_semantic_token.shape[0] == 1

            mel_spec = self.vocoder.extract_mel_from_wav(wav_data=timbre_speech.squeeze(0))
        else:
            assert len(timbre_mel.shape) == 3 and len(timbre_semantic_token.shape) == 2 and chunk_size > 0
            assert timbre_mel.shape[0] == 1 and timbre_semantic_token.shape[0] == 1
            mel_spec = timbre_mel.squeeze(0)

        if mel_spec.shape[0] < timbre_semantic_token.shape[1]:
            # pad mel_spec
            mel_spec = torch.nn.functional.pad(mel_spec, (0, 0, 0, timbre_semantic_token.shape[1] - mel_spec.shape[0]))
        elif mel_spec.shape[0] > timbre_semantic_token.shape[1]:
            # truncate mel_spec
            mel_spec = mel_spec[:timbre_semantic_token.shape[1], :]

        # clear all states
        self.semantic_fm.clear_all_states()
        self.semantic_fm.prefill(mel_spec, timbre_semantic_token.squeeze(0), chunk_size=chunk_size, verbose=False)
        self.state_dict_backup = self.semantic_fm.state_dict()

    @torch.inference_mode()
    def detokenize_streaming(self, semantic_token, ode_step=30, verbose=False, ode_solver="neural_ode_euler", is_final=False, upsample_factor=1):
        assert len(semantic_token.shape) == 2 and ode_step > 0
        assert semantic_token.shape[0] == 1

        semantic_token = semantic_token.repeat_interleave(upsample_factor, dim=1)
        
        semantic_token = semantic_token.squeeze(0)

        if self.look_ahead_tokens != 0 and self.previous_chunk_left is not None:
            semantic_token_previous = self.previous_chunk_left["semantic_token"]
            semantic_token = torch.cat([semantic_token_previous, semantic_token], dim=-1)

        x_t_chunk = torch.randn(semantic_token.shape[0], 80).to(semantic_token.device).to(self.dtype)

        if self.look_ahead_tokens != 0 and self.previous_chunk_left is None:
            self.previous_chunk_left = {"semantic_token": None}
        
        speech_mel = self.semantic_fm.infer_chunk(
            xt_chunk=x_t_chunk, 
            semantic_tokens_chunk=semantic_token, 
            start_position_id=self.semantic_fm.start_position_id,
            ode_steps=ode_step, 
            verbose=verbose, 
            look_ahead_tokens=self.look_ahead_tokens * upsample_factor if not is_final else 0,
            cache=self.previous_chunk_left,
            ode_solver=ode_solver
        )

        chunk_size = speech_mel.shape[0]
        length = speech_mel.shape[0]
        self.semantic_fm.start_position_id += length
        self.semantic_fm.update_incremental_state()
        self.semantic_fm.reserve_kv_cache_tokens += self.semantic_fm.ode_wrapper.kv_cache_tokens
        
        # smoothing

        # I will maintain the history of seqlen wav
        # For the first chunk, I will only return the half chunk wav, and save the res half chunk in history
        # For the rest requests, I will concat the generated wav with the history, output one chunk of the history, save the 

        if self.pre_mel is None: # first chunk, related to TTFB
            concat_mel = speech_mel
            concat_reconstructed_wav = self.vocoder.decode_mel(concat_mel)
            if is_final:
                self.clear_states()
                self.state_dict_backup = None
                ret_wav = concat_reconstructed_wav.float()
            else:
                reconstructed_wav = concat_reconstructed_wav[:, :int(self.frame_size * chunk_size // 2)] # return the first half chunk

                self.pre_wav = concat_reconstructed_wav[:, -int(self.frame_size * chunk_size // 2):] # log the last half chunk for next generation step
                self.pre_mel = speech_mel[-chunk_size//2:, :]

                ret_wav = reconstructed_wav.float()
        else:
            concat_mel = torch.cat([self.pre_mel, speech_mel], dim=0)
            concat_reconstructed_wav = self.vocoder.decode_mel(concat_mel)

            if is_final:
                self.clear_states()
                self.state_dict_backup = None
                ret_wav = concat_reconstructed_wav.float()
            else:
                # fetch history
                prev_speech_len = self.pre_wav.shape[1]

                if concat_reconstructed_wav.shape[1] > prev_speech_len * 2:
                    gen_speech_len = prev_speech_len * 2
                else:
                    gen_speech_len = concat_reconstructed_wav.shape[1] // 2


                reconstructed_wav = concat_reconstructed_wav[:, :gen_speech_len] # return the first half chunk
                
                if gen_speech_len not in self.hamming_window_cache:
                    self.hamming_window_cache[gen_speech_len] = torch.hamming_window(gen_speech_len).to(self.dtype).to(semantic_token.device).unsqueeze(0)
                
                hamming_window = self.hamming_window_cache[gen_speech_len]
                
                
                # apply smoothing of the first half chunk
                reconstructed_wav[:, :int(gen_speech_len // 2 )] = self.pre_wav[:, :int(gen_speech_len // 2 )] * hamming_window[:,-int(gen_speech_len // 2):] + \
                    reconstructed_wav[:, :int(gen_speech_len // 2)] * hamming_window[:, :int(gen_speech_len // 2)]
            
                res_speech_len = concat_reconstructed_wav.shape[1] - gen_speech_len
                res_mel_len = res_speech_len // self.frame_size

                self.pre_wav = concat_reconstructed_wav[:, -res_speech_len:]
                self.pre_mel = speech_mel[-res_mel_len:, :]
                ret_wav = reconstructed_wav.float()
        
        if not is_final and self.semantic_fm.start_position_id + 2*chunk_size > self.max_pos_size:
            # out of position id, 
            self.semantic_fm.clear_all_states()
            self.semantic_fm.load_state_dict(self.state_dict_backup)

        return ret_wav

    def clear_states(self):
        self.semantic_fm.clear_all_states()
        self.previous_chunk_left = None
        self.pre_mel = None
        self.pre_wav = None

def get_audio_detokenizer():
    fm_model_config = "resources/audio_detokenizer/config.yaml"
    fm_ckpt_path = "resources/audio_detokenizer/model.pt"

    bigvgan_config_file = "resources/vocoder/config.json"
    bigvgan_ckpt_path = "resources/vocoder/model.pt"

    device=torch.cuda.current_device()
    detokenizer = PrefixStreamingFlowMatchingDetokenizer.from_pretrained(
    vocoder_config=bigvgan_config_file, 
    vocoder_ckpt=bigvgan_ckpt_path, 
    max_prompt_chunk=10, # 10 * 3 = 30s
    fm_config=fm_model_config, 
    fm_ckpt=fm_ckpt_path, 
    device=device, 
    use_cfg=False,
    look_ahead_tokens=12) 
    
    return detokenizer


def detokenize(detokenizer, tokens, ref_wav, ref_tokens, streaming=False):
    with torch.no_grad():
        detokenizer.clear_states()
        detokenizer.prefill(ref_wav, ref_tokens, chunk_size=150)
        cache_speech_collection = []
        chunk_size = 150
        first_chunk_size = 100
        first_chunk_tokens = tokens[:, :first_chunk_size]
        gen_speech = detokenizer.detokenize_streaming(first_chunk_tokens, is_final=tokens.size(1) <= first_chunk_size)
        if streaming:
            yield gen_speech
        else:
            cache_speech_collection.append(gen_speech)
        res_tokens = tokens[:, first_chunk_size:]
        for i in range(0, res_tokens.size(1), chunk_size):
            chunk_tokens = res_tokens[:, i:i+chunk_size]
            gen_speech = detokenizer.detokenize_streaming(chunk_tokens, is_final=(i+chunk_size >= res_tokens.size(1)))
            if streaming:
                yield gen_speech
            else:
                cache_speech_collection.append(gen_speech)
        if not streaming:
            gen_speech_all = torch.cat(cache_speech_collection, dim=-1)
            return gen_speech_all

def detokenize_noref(detokenizer, tokens, streaming=False):
    with torch.no_grad():
        detokenizer.clear_states()
        cache_speech_collection = []
        chunk_size = 150
        first_chunk_size = 100
        first_chunk_tokens = tokens[:, :first_chunk_size]
        gen_speech = detokenizer.detokenize_streaming(first_chunk_tokens, is_final=tokens.size(1) <= first_chunk_size)
        if streaming:
            yield gen_speech
        else:
            cache_speech_collection.append(gen_speech)
        res_tokens = tokens[:, first_chunk_size:]
        for i in range(0, res_tokens.size(1), chunk_size):
            chunk_tokens = res_tokens[:, i:i+chunk_size]
            gen_speech = detokenizer.detokenize_streaming(chunk_tokens, is_final=(i+chunk_size >= res_tokens.size(1)))
            if streaming:
                yield gen_speech
            else:
                cache_speech_collection.append(gen_speech)
        if not streaming:
            gen_speech_all = torch.cat(cache_speech_collection, dim=-1)
            return gen_speech_all