File size: 8,661 Bytes
1373f78
 
 
 
635f007
1373f78
635f007
1373f78
 
 
 
 
 
 
 
 
 
 
635f007
 
 
 
1373f78
 
 
635f007
 
1373f78
635f007
 
 
1373f78
 
635f007
 
1373f78
635f007
1373f78
 
 
 
 
 
 
635f007
 
1373f78
635f007
 
 
 
 
 
1373f78
635f007
 
 
 
 
 
 
 
 
 
 
 
 
1373f78
 
635f007
1373f78
635f007
 
1373f78
635f007
 
1373f78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
635f007
 
1373f78
 
 
635f007
 
 
1373f78
 
 
 
 
 
 
61a2d96
1373f78
 
 
635f007
 
 
1373f78
635f007
 
 
 
1373f78
635f007
 
 
1373f78
635f007
 
 
 
 
 
 
 
 
 
 
1373f78
 
 
 
635f007
 
 
1373f78
 
 
 
 
 
 
 
 
635f007
addff22
635f007
1373f78
 
635f007
 
 
 
 
 
 
 
 
 
 
1373f78
 
 
 
 
 
 
635f007
 
 
 
1373f78
 
635f007
1373f78
635f007
 
 
 
 
 
 
 
 
 
1373f78
635f007
 
 
1373f78
 
 
 
 
635f007
 
 
1373f78
 
 
 
 
635f007
1373f78
635f007
1373f78
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import librosa
import numpy as np
import torch
import torchaudio
from cached_path import cached_path
import random
import nltk
from models import build_model
from text_utils import TextCleaner
from nltk.tokenize import word_tokenize
import phonemizer
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
from utils import recursive_munch
from Utils.PLBERT.util import load_plbert

nltk.download("punkt")
np.random.seed(0)
random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

global_phonemizer = phonemizer.backend.EspeakBackend(
    language="en-us", preserve_punctuation=True, with_stress=True
)


textcleaner = TextCleaner()


to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
mean, std = -4, 4


def length_to_mask(lengths):
    mask = (
        torch.arange(lengths.max())
        .unsqueeze(0)
        .expand(lengths.shape[0], -1)
        .type_as(lengths)
    )
    mask = torch.gt(mask + 1, lengths.unsqueeze(1))
    return mask


def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor


def compute_style(path):
    wave, sr = librosa.load(path, sr=24000)
    audio, index = librosa.effects.trim(wave, top_db=30)
    if sr != 24000:
        audio = librosa.resample(audio, sr, 24000)
    mel_tensor = preprocess(audio).to(device)

    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

    return torch.cat([ref_s, ref_p], dim=1)


device = "cpu"
if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    print("MPS would be available but cannot be used rn")
    # device = "mps"

# config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
config = {
    "ASR_config": "Utils/ASR/config.yml",
    "ASR_path": "Utils/ASR/epoch_00080.pth",
    "F0_path": "Utils/JDC/bst.t7",
    "PLBERT_dir": "Utils/PLBERT/",
    "batch_size": 8,
    "data_params": {
        "OOD_data": "Data/OOD_texts.txt",
        "min_length": 50,
        "root_path": "",
        "train_data": "Data/train_list.txt",
        "val_data": "Data/val_list.txt",
    },
    "device": "cuda",
    "epochs_1st": 40,
    "epochs_2nd": 25,
    "first_stage_path": "first_stage.pth",
    "load_only_params": False,
    "log_dir": "Models/LibriTTS",
    "log_interval": 10,
    "loss_params": {
        "TMA_epoch": 4,
        "diff_epoch": 0,
        "joint_epoch": 0,
        "lambda_F0": 1.0,
        "lambda_ce": 20.0,
        "lambda_diff": 1.0,
        "lambda_dur": 1.0,
        "lambda_gen": 1.0,
        "lambda_mel": 5.0,
        "lambda_mono": 1.0,
        "lambda_norm": 1.0,
        "lambda_s2s": 1.0,
        "lambda_slm": 1.0,
        "lambda_sty": 1.0,
    },
    "max_len": 300,
    "model_params": {
        "decoder": {
            "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
            "resblock_kernel_sizes": [3, 7, 11],
            "type": "hifigan",
            "upsample_initial_channel": 512,
            "upsample_kernel_sizes": [20, 10, 6, 4],
            "upsample_rates": [10, 5, 3, 2],
        },
        "diffusion": {
            "dist": {
                "estimate_sigma_data": True,
                "mean": -3.0,
                "sigma_data": 0.19926648961191362,
                "std": 1.0,
            },
            "embedding_mask_proba": 0.1,
            "transformer": {
                "head_features": 64,
                "multiplier": 2,
                "num_heads": 8,
                "num_layers": 3,
            },
        },
        "dim_in": 64,
        "dropout": 0,
        "hidden_dim": 512,
        "max_conv_dim": 512,
        "max_dur": 50,
        "multispeaker": True,
        "n_layer": 3,
        "n_mels": 80,
        "n_token": 178,
        "slm": {
            "hidden": 768,
            "initial_channel": 64,
            "model": "microsoft/wavlm-base-plus",
            "nlayers": 13,
            "sr": 16000,
        },
        "style_dim": 128,
    },
    "optimizer_params": {"bert_lr": 1e-05, "ft_lr": 1e-05, "lr": 0.0001},
    "preprocess_params": {
        "spect_params": {"hop_length": 300, "n_fft": 2048, "win_length": 1200},
        "sr": 24000,
    },
    "pretrained_model": "Models/LibriTTS/epoch_2nd_00002.pth",
    "save_freq": 1,
    "second_stage_load_pretrained": True,
    "slmadv_params": {
        "batch_percentage": 0.5,
        "iter": 20,
        "max_len": 500,
        "min_len": 400,
        "scale": 0.01,
        "sig": 1.5,
        "thresh": 5,
    },
}


BERT_path = config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)


model_params = recursive_munch(config["model_params"])
model = build_model(model_params, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

# for key in model:
#     print(f"Compiling {key}")
#     model[key] = torch.compile(model[key])
#     print(f"Compiled {key}")


params_whole = torch.load(
    str(cached_path("https://base-weights.weights.gg/epochs_2nd_00020.pth")),
    map_location="cpu",
)
params = params_whole["net"]

for key in model:
    if key in params:
        print("%s loaded" % key)
        try:
            model[key].load_state_dict(params[key])
        except:
            from collections import OrderedDict

            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:]  # remove `module.`
                new_state_dict[name] = v
            # load params
            model[key].load_state_dict(new_state_dict, strict=False)
#             except:
#                 _load(params[key], model[key])
_ = [model[key].eval() for key in model]


sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(
        sigma_min=0.0001, sigma_max=3.0, rho=9.0
    ),  # empirical parameters
    clamp=False,
)


def inference(
    text,
    ref_s,
    alpha=0.3,
    beta=0.7,
    diffusion_steps=5,
    embedding_scale=1,
    use_gruut=False,
):
    text = text.strip()
    ps = global_phonemizer.phonemize([text])
    ps = word_tokenize(ps[0])
    ps = " ".join(ps)
    tokens = textcleaner(ps)
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)

    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)

        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2)

        s_pred = sampler(
            noise=torch.randn((1, 256)).unsqueeze(1).to(device),
            embedding=bert_dur,
            embedding_scale=embedding_scale,
            features=ref_s,  # reference from the same speaker as the embedding
            num_steps=diffusion_steps,
        ).squeeze(1)

        s = s_pred[:, 128:]
        ref = s_pred[:, :128]

        ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
        s = beta * s + (1 - beta) * ref_s[:, 128:]

        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)

        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)

        duration = torch.sigmoid(duration).sum(axis=-1)
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)

        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame : c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
        asr_new = torch.zeros_like(en)
        asr_new[:, :, 0] = en[:, :, 0]
        asr_new[:, :, 1:] = en[:, :, 0:-1]
        en = asr_new

        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

        asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
        asr_new = torch.zeros_like(asr)
        asr_new[:, :, 0] = asr[:, :, 0]
        asr_new[:, :, 1:] = asr[:, :, 0:-1]
        asr = asr_new

        out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))

    return (
        out.squeeze().cpu().numpy()[..., :-50]
    )  # weird pulse at the end of the model, need to be fixed later