Spaces:
Sleeping
Sleeping
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
import gradio as gr | |
import multiprocessing | |
import time | |
import os | |
# Model paths - download models if not already cached | |
def get_model_path(repo_id, filename): | |
print(f"Obtaining {filename}...") | |
return hf_hub_download(repo_id=repo_id, filename=filename) | |
# Get models | |
base_model_path = get_model_path( | |
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF", | |
"articulate-11-expspanish-base-merged-q8_0.gguf" | |
) | |
adapter_path = get_model_path( | |
"johnpaulbin/articulate-V1-Q8_0-GGUF", | |
"articulate-V1-q8_0.gguf" | |
) | |
# CPU optimization settings | |
cpu_count = multiprocessing.cpu_count() | |
physical_cores = max(1, cpu_count // 2) # Estimate physical cores | |
optimal_threads = max(4, physical_cores - 1) # Leave one core free for system | |
batch_size = int(os.environ.get("BATCH_SIZE", "512")) # Configurable batch size | |
print(f"Initializing model with {optimal_threads} threads and batch size {batch_size}...") | |
# Initialize model with optimized parameters | |
start_time = time.time() | |
llm = Llama( | |
model_path=base_model_path, | |
lora_path=adapter_path, | |
n_ctx=512, # Context length | |
n_threads=optimal_threads, # Optimized thread count | |
n_batch=batch_size, # Process more tokens in parallel | |
use_mmap=True, # More efficient memory usage | |
n_gpu_layers=0, # CPU only | |
seed=42, # Consistent results | |
verbose=False # Reduce logging overhead | |
) | |
print(f"Model loaded in {time.time() - start_time:.2f} seconds") | |
# Translation cache | |
translation_cache = {} | |
MAX_CACHE_SIZE = 100 # Limit cache size | |
def translate(direction, text): | |
# Skip empty inputs | |
if not text or not text.strip(): | |
return "" | |
# Check cache first for faster response | |
cache_key = f"{direction}:{text}" | |
if cache_key in translation_cache: | |
return translation_cache[cache_key] | |
# Start timing for performance tracking | |
start_time = time.time() | |
# Map language directions | |
lang_map = { | |
"English to Spanish": ("ENGLISH", "SPANISH"), | |
"Spanish to English": ("SPANISH", "ENGLISH"), | |
"Korean to English": ("KOREAN", "ENGLISH"), | |
"English to Korean": ("ENGLISH", "KOREAN") | |
} | |
if direction not in lang_map: | |
return "Invalid direction" | |
source_lang, target_lang = lang_map[direction] | |
# Efficient prompt format | |
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]" | |
# Estimate appropriate token length based on input | |
input_tokens = len(text.split()) | |
max_tokens = min(200, max(50, int(input_tokens * 1.5))) | |
# Generate translation with optimized settings | |
response = llm.create_completion( | |
prompt, | |
max_tokens=max_tokens, | |
temperature=0.0, # Deterministic for faster inference | |
top_k=1, # Only consider most likely token | |
top_p=1.0, # No sampling | |
repeat_penalty=1.0, # No repeat penalty processing | |
stream=False # Get complete response at once (faster) | |
) | |
translation = response['choices'][0]['text'].strip() | |
# Cache result | |
if len(translation_cache) >= MAX_CACHE_SIZE: | |
# Remove oldest entry (first key) | |
translation_cache.pop(next(iter(translation_cache))) | |
translation_cache[cache_key] = translation | |
# Log performance | |
inference_time = time.time() - start_time | |
tokens_per_second = (input_tokens + len(translation.split())) / inference_time | |
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)") | |
return translation | |
# Create Gradio interface with minimal overhead | |
with gr.Blocks(title="Fast Translation App") as iface: | |
gr.Markdown("## Translation App") | |
with gr.Row(): | |
direction = gr.Dropdown( | |
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"], | |
label="Translation Direction", | |
value="English to Spanish" | |
) | |
with gr.Row(): | |
input_text = gr.Textbox(lines=5, label="Input Text") | |
output_text = gr.Textbox(lines=5, label="Translation") | |
# Add translate button | |
translate_btn = gr.Button("Translate") | |
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text) | |
# Add examples for convenience | |
gr.Examples( | |
examples=[ | |
["English to Spanish", "Hello, how are you today?"], | |
["Spanish to English", "Hola, ¿cómo estás hoy?"], | |
["English to Korean", "The weather is nice today."], | |
["Korean to English", "오늘 날씨가 좋습니다."] | |
], | |
inputs=[direction, input_text], | |
outputs=output_text, | |
cache_examples=True # Pre-compute examples | |
) | |
# Launch with optimized settings | |
iface.launch(debug=False, show_error=True) |