googoo / app.py
johnpaulbin's picture
Update app.py
b27a850 verified
raw
history blame
4.96 kB
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import gradio as gr
import multiprocessing
import time
import os
# Model paths - download models if not already cached
def get_model_path(repo_id, filename):
print(f"Obtaining {filename}...")
return hf_hub_download(repo_id=repo_id, filename=filename)
# Get models
base_model_path = get_model_path(
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
"articulate-11-expspanish-base-merged-q8_0.gguf"
)
adapter_path = get_model_path(
"johnpaulbin/articulate-V1-Q8_0-GGUF",
"articulate-V1-q8_0.gguf"
)
# CPU optimization settings
cpu_count = multiprocessing.cpu_count()
physical_cores = max(1, cpu_count // 2) # Estimate physical cores
optimal_threads = max(4, physical_cores - 1) # Leave one core free for system
batch_size = int(os.environ.get("BATCH_SIZE", "512")) # Configurable batch size
print(f"Initializing model with {optimal_threads} threads and batch size {batch_size}...")
# Initialize model with optimized parameters
start_time = time.time()
llm = Llama(
model_path=base_model_path,
lora_path=adapter_path,
n_ctx=512, # Context length
n_threads=optimal_threads, # Optimized thread count
n_batch=batch_size, # Process more tokens in parallel
use_mmap=True, # More efficient memory usage
n_gpu_layers=0, # CPU only
seed=42, # Consistent results
verbose=False # Reduce logging overhead
)
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# Translation cache
translation_cache = {}
MAX_CACHE_SIZE = 100 # Limit cache size
def translate(direction, text):
# Skip empty inputs
if not text or not text.strip():
return ""
# Check cache first for faster response
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# Start timing for performance tracking
start_time = time.time()
# Map language directions
lang_map = {
"English to Spanish": ("ENGLISH", "SPANISH"),
"Spanish to English": ("SPANISH", "ENGLISH"),
"Korean to English": ("KOREAN", "ENGLISH"),
"English to Korean": ("ENGLISH", "KOREAN")
}
if direction not in lang_map:
return "Invalid direction"
source_lang, target_lang = lang_map[direction]
# Efficient prompt format
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]"
# Estimate appropriate token length based on input
input_tokens = len(text.split())
max_tokens = min(200, max(50, int(input_tokens * 1.5)))
# Generate translation with optimized settings
response = llm.create_completion(
prompt,
max_tokens=max_tokens,
temperature=0.0, # Deterministic for faster inference
top_k=1, # Only consider most likely token
top_p=1.0, # No sampling
repeat_penalty=1.0, # No repeat penalty processing
stream=False # Get complete response at once (faster)
)
translation = response['choices'][0]['text'].strip()
# Cache result
if len(translation_cache) >= MAX_CACHE_SIZE:
# Remove oldest entry (first key)
translation_cache.pop(next(iter(translation_cache)))
translation_cache[cache_key] = translation
# Log performance
inference_time = time.time() - start_time
tokens_per_second = (input_tokens + len(translation.split())) / inference_time
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)")
return translation
# Create Gradio interface with minimal overhead
with gr.Blocks(title="Fast Translation App") as iface:
gr.Markdown("## Translation App")
with gr.Row():
direction = gr.Dropdown(
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"],
label="Translation Direction",
value="English to Spanish"
)
with gr.Row():
input_text = gr.Textbox(lines=5, label="Input Text")
output_text = gr.Textbox(lines=5, label="Translation")
# Add translate button
translate_btn = gr.Button("Translate")
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
# Add examples for convenience
gr.Examples(
examples=[
["English to Spanish", "Hello, how are you today?"],
["Spanish to English", "Hola, ¿cómo estás hoy?"],
["English to Korean", "The weather is nice today."],
["Korean to English", "오늘 날씨가 좋습니다."]
],
inputs=[direction, input_text],
outputs=output_text,
cache_examples=True # Pre-compute examples
)
# Launch with optimized settings
iface.launch(debug=False, show_error=True)