Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load pipelines
|
6 |
+
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
7 |
+
text_to_speech = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
8 |
+
|
9 |
+
st.title("Image-to-Text and Text-to-Speech App")
|
10 |
+
|
11 |
+
# Image uploader
|
12 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
13 |
+
|
14 |
+
if uploaded_image:
|
15 |
+
image = Image.open(uploaded_image)
|
16 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
17 |
+
|
18 |
+
# Convert image to text
|
19 |
+
text_output = image_to_text(image)[0]['generated_text']
|
20 |
+
st.write("### Extracted Text:")
|
21 |
+
st.write(text_output)
|
22 |
+
|
23 |
+
# Convert text to speech
|
24 |
+
speech_output = text_to_speech(text_output)
|
25 |
+
st.write("### Listen to Speech Output:")
|
26 |
+
st.audio(speech_output['audio'],
|
27 |
+
format="audio/wav",
|
28 |
+
start_time=0,
|
29 |
+
sample_rate = speech_output['sampling_rate'])
|