joey1101 commited on
Commit
2ce0aff
·
verified ·
1 Parent(s): a241059

Create llm_model.py

Browse files
Files changed (1) hide show
  1. llm_model.py +92 -0
llm_model.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from langchain.chains import ConversationalRetrievalChain, StuffDocumentsChain
3
+ from langchain.prompts import PromptTemplate
4
+ from ipex_llm.langchain.llms import TransformersLLM
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
7
+ from ipex_llm.langchain.embeddings import TransformersEmbeddings
8
+ from langchain import LLMChain
9
+ from utils.utils import new_cd
10
+
11
+ parent_dir = os.path.dirname(__file__)
12
+
13
+ condense_template = """
14
+ Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
15
+ You can assume the discussion is about the video content.
16
+ REMEMBER: If there is no relevant information within the context, just say "Hmm, I'm \
17
+ not sure." Don't try to make up an answer. \
18
+ Chat History:
19
+ {chat_history}
20
+ Follow Up Question: {question}
21
+ Standalone question:
22
+ """
23
+
24
+ qa_template = """
25
+ You are an AI assistant designed for answering questions about a meeting.
26
+ You are given a word records of this meeting.
27
+ Try to comprehend the dialogs and provide a answer based on it.
28
+ =========
29
+ {context}
30
+ =========
31
+ Question: {question}
32
+ Answer:
33
+ """
34
+ # CONDENSE_QUESTION_PROMPT 用于将聊天历史记录和下一个问题压缩为一个独立的问题
35
+ CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template)
36
+ # QA_PROMPT为机器人设定基调和目的
37
+ QA_PROMPT = PromptTemplate(template=qa_template, input_variables=["question", "context"])
38
+ # DOC_PROMPT = PromptTemplate.from_template("Video Clip {video_clip}: {page_content}")
39
+ DOC_PROMPT = PromptTemplate.from_template("{page_content}")
40
+
41
+
42
+ class LlmReasoner():
43
+ def __init__(self, args):
44
+ self.history = []
45
+ self.llm_version = args.llm_version
46
+ self.embed_version = args.embed_version
47
+ self.qa_chain = None
48
+ self.vectorstore = None
49
+ self.top_k = args.top_k
50
+ self.qa_max_new_tokens = args.qa_max_new_tokens
51
+ self.init_model()
52
+
53
+ def init_model(self):
54
+ with new_cd(parent_dir):
55
+ self.llm = TransformersLLM.from_model_id_low_bit(
56
+ f"..\\checkpoints\\{self.llm_version}")
57
+ self.llm.streaming = False
58
+ self.embeddings = TransformersEmbeddings.from_model_id(
59
+ model_id=f"..\\checkpoints\\{self.embed_version}")
60
+
61
+ def create_qa_chain(self, args, input_log):
62
+ self.top_k = args.top_k
63
+ self.qa_max_new_tokens = args.qa_max_new_tokens
64
+ self.question_generator = LLMChain(llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT)
65
+ self.answer_generator = LLMChain(llm=self.llm, prompt=QA_PROMPT,
66
+ llm_kwargs={"max_new_tokens": self.qa_max_new_tokens})
67
+ self.doc_chain = StuffDocumentsChain(llm_chain=self.answer_generator, document_prompt=DOC_PROMPT,
68
+ document_variable_name='context')
69
+ # 拆分查看字符的文本, 创建一个新的文本分割器
70
+ # self.text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0, keep_separator=True)
71
+ self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=0)
72
+ texts = self.text_splitter.split_text(input_log)
73
+ self.vectorstore = FAISS.from_texts(texts, self.embeddings,
74
+ metadatas=[{"video_clip": str(i)} for i in range(len(texts))])
75
+ retriever = self.vectorstore.as_retriever(search_kwargs={"k": self.top_k})
76
+ self.qa_chain = ConversationalRetrievalChain(retriever=retriever,
77
+ question_generator=self.question_generator,
78
+ combine_docs_chain=self.doc_chain,
79
+ return_generated_question=True,
80
+ return_source_documents=True,
81
+ rephrase_question=False)
82
+
83
+ def __call__(self, question):
84
+ response = self.qa_chain({"question": question, "chat_history": self.history})
85
+ answer = response["answer"]
86
+ generated_question = response["generated_question"]
87
+ source_documents = response["source_documents"]
88
+ self.history.append([question, answer])
89
+ return self.history, generated_question, source_documents
90
+
91
+ def clean_history(self):
92
+ self.history = []